Abstract

The effect of viscosity on the unstable interface of the cylindrical jet is analyzed through viscous potential flow approach. The jet is moving radially and jet interface is experiencing Rayleigh–Taylor type instability. Previous studies have completely ignored the viscosity effect while considering the instability of a radially moving cylindrical jet. The fluids inside and outside jet are incompressible as well as viscous. The theoretical analysis provides us a second-order ordinary differential equation to establish the instability/stability criterion. The radial velocity and acceleration both have significant impact on the stability of the jet. We found that as viscosity enters to the analysis, perturbations grow rapidly. In addition, the acquired stability criterion is applied to the cylindrical jets in HYLIFE-II which is basically an inertial confinement fusion reactor.

References

1.
Eggers
,
J.
, and
Villermaux
,
E.
,
2008
, “
Physics of Liquid Jets
,”
Rep. Prog. Phys.
,
71
(
3
), p.
036601
.10.1088/0034-4885/71/3/036601
2.
Anno
,
J. N.
,
1977
,
The Mechanics of Liquid Jets
,
Lexington
,
Mass., D. C. Heath
, pp.
1–118
.
3.
Chen
,
X. M.
,
Schrock
,
V. E.
, and
Peterson
,
P. F.
,
1992
, “
The Hydraulicanalysis of Cylindrical Flibe Jets in a HYLIFE-II Reactor
,”
Fusion Technol.
,
21
(
3P2A
), pp.
1531
1536
.10.13182/FST92-A29937
4.
Plesset
,
M. S.
,
1954
, “
On the Stability of fluid flows With Spherical Symmetry
,”
J. Appl. Phys.
,
25
(
1
), pp.
96
98
.10.1063/1.1721529
5.
Chandrasekhar
,
S.
,
1981
,
Hydrodynamic and Hydromagnetic Stability
,
Dover Publications
,
New York
.
6.
Prosperetti
,
A.
,
1976
, “
Viscous Effects on Small Amplitude Surface Waves
,”
Phys. Fluids
,
19
(
2
), pp.
195
203
.10.1063/1.861446
7.
Prosperetti
,
A.
,
1981
, “
Motion of Two Superposed Viscous Fluids
,”
Phys. Fluids
,
24
(
7
), pp.
1217
1223
.10.1063/1.863522
8.
Radwan
,
A. E.
,
Radwan
,
H. A.
, and
Hendi
,
M. H.
,
2001
, “
Toroidalmagnetodynamic Stability of Cylindrical Fluid Jet
,”
Chaos, Solitons Fractals
,
12
(
9
), pp.
1729
1735
.10.1016/S0960-0779(00)00088-6
9.
Carpentier
,
J. B.
,
Baillot
,
F.
,
Blaisot
,
J. B.
, and
Dumouchel
,
C.
,
2009
, “
Behaviour of Cylindrical Liquid Jets Evolving in a Transverse Acoustic Field
,”
Phys. Fluids
,
21
(
2
), p.
023601
.10.1063/1.3075823
10.
Chen
,
X. M.
,
Schrock
,
V. E.
, and
Peterson
,
P. F.
,
1997
, “
Rayleigh–Taylor Instability of Cylindrical Jets With Radial Motion
,”
Nucl. Eng. Des.
,
177
(
1–3
), pp.
121
129
.10.1016/S0029-5493(97)00189-1
11.
Joseph
,
D. D.
, and
Liao
,
T. Y.
,
1994
, “
Potential Flows of Viscous and Viscoelastic Fluids
,”
J. Fluid Mech.
,
265
, pp.
1
23
.10.1017/S0022112094000741
12.
Funada
,
T.
,
Joseph
,
D. D.
, and
Yamashita
,
S.
,
2004
, “
Stability of a Liquid Jet Into Incompressible Gases and Liquids
,”
Int. J. Multiphase Flow
,
30
(
11
), pp.
1279
1310
.10.1016/j.ijmultiphaseflow.2004.07.001
13.
Asthana
,
R.
,
Awasthi
,
M. K.
, and
Agrawal
,
G. S.
,
2011
, “
Viscous Potential Flow Analysis of Rayleigh–Taylor Instability of Cylindrical Interface
,”
Appl. Mech. Mater.
,
110–116
, pp.
769
775
.10.4028/www.scientific.net/AMM.110-116.769
14.
Moatimid
,
G. M.
, and
Hassan
,
M. A.
,
2013
, “
Three-Dimensional Viscous Potential Electrohydrodynamic Kelvin–Helmholtz Instability Through Vertical Cylindrical Porous Inclusions With Permeable Boundaries
,”
ASME J. Fluid Eng.
,
136
(
2
), p.
021203
.10.1115/1.4025681
15.
Awasthi
,
M. K.
,
2013
, “
Nonlinear Analysis of Rayleigh–Taylor Instability of Cylindrical Flow With Heat and Mass Transfer
,”
ASME J. Fluid Eng.
,
135
(
6
), p.
061205
.10.1115/1.4024001
16.
Awasthi
,
M. K.
,
2014
, “
Nonlinear Rayleigh–Taylor Instability of Cylindrical Flow With Mass Transfer Through Porous Media
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
79
85
.10.1016/j.icheatmasstransfer.2014.06.001
17.
Awasthi
,
M. K.
,
2019
, “
Rayleigh–Taylor Instability of Swirling Annular Layer With Mass Transfer
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071202
.10.1115/1.4042174
18.
Mikaelian
,
K. O.
,
2019
, “
Exact, Approximate, and Hybrid Treatments of Viscous Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Phys. Rev. E
,
99
(
2
), p.
023112
.10.1103/PhysRevE.99.023112
19.
Liu
,
W.-H.
,
Ma
,
W.-F.
, and
Wang
,
X.-L.
,
2015
, “
Cylindrical Effects in Weakly Nonlinear Rayleigh–Taylor Instability
,”
Chin. Phys. B
,
24
(
1
), p.
015202
.10.1088/1674-1056/24/1/015202
20.
Guo
,
H. Y.
,
Wang
,
L. F.
,
Ye
,
W. H.
,
Wu
,
J. F.
, and
Zhang
,
W. Y.
,
2018
, “
Coupling Between Velocity and Interface Perturbations In Cylindrical Rayleigh–Taylor Instability
,”
Chin. Phys. B
,
27
(
5
), p.
055205
.10.1088/1674-1056/27/5/055205
You do not currently have access to this content.