Abstract

Direct numerical simulations (DNSs) were carried out in order reproduce the generation and control of transition on a flat plate by means of local dynamic surface modification. The configurations and flow conditions duplicate those of previous numerical investigations, and are similar to an experimental arrangement, which employed piezoelectrically driven actuators to impart small amplitude local deformation of the plate surface. In those studies, one actuator was located in the upstream plate region, and oscillated at the most unstable frequency of 250 Hz in order to generate small disturbances, which amplified Tollmien–Schlichting instabilities. A second actuator placed downstream, was then oscillated at the same frequency, but with appropriate amplitudes in order to mitigate disturbance growth and delay the evolution of transition. Prior simulations employed an empirical process to determine optimal values of the control parameters. In the current effort, this process is replaced with a closed-loop control law. Numerical solutions are obtained to the two-dimensional and three-dimensional compressible Navier–Stokes equations, utilizing a high-fidelity numerical scheme and an implicit time-marching approach. Local surface modification of the plate is enforced via grid deformation. Results of the simulations are presented, and features of the flowfields are described. Comparisons are made between results obtained with the two control methods, and effectiveness of the closed-loop approach is evaluated.

References

References
1.
Schlichting
,
H.
, and
Gersten
,
K.
,
2001
,
Boundary-Layer Theory
, 8th ed.
Springer-Verlag
,
New York
.
2.
Herbert
,
T.
,
1988
, “
Secondary Instabilities of Boundary Layers
,”
Ann. Rev. Fluid Mech.
,
20
, pp.
487
526
.10.1146/annurev.fl.20.010188.002415
3.
Gaster
,
M.
,
1962
, “
A Note on the Relation Between Temporally-Increasing and Spatially-Increasing Disturbances in Hydrodynamic Stability
,”
J. Fluid Mech.
,
14
(
2
), pp.
222
224
.10.1017/S0022112062001184
4.
Gaster
,
M.
,
1965
, “
On the Generation of Spatially Growing Waves in a Boundary Layer
,”
J. Fluid Mech.
,
22
(
3
), pp.
433
441
.10.1017/S0022112065000873
5.
Wehrmann
,
O. H.
,
1965
, “
Tollmien-Schlichtling Waves Under the Influence of a Flexible Wall
,”
Phys. Fluids
,
8
(
7
), p.
1389
.10.1063/1.1761414
6.
Jordinson
,
R.
,
1970
, “
The Flat Plate Boundary Layer—Part 1: Numerical Integration of the Orr-Sommerfeld Equation
,”
J. Fluid Mech.
,
43
(
4
), pp.
801
811
.10.1017/S0022112070002756
7.
Liepmann
,
H. W.
,
Brown
,
G. L.
, and
Nosenchuck
,
D. M.
,
1982
, “
Control of Laminar-Instability Waves Using a New Technique
,”
J. Fluid Mech.
,
118
, pp.
187
200
.10.1017/S0022112082001025
8.
Liepmann
,
H. W.
, and
Nosenchuck
,
D. M.
,
1982
, “
Active Control of Laminar-Turbulent Transition
,”
J. Fluid Mech.
,
118
, pp.
201
204
.10.1017/S0022112082001037
9.
Thomas
,
S. W.
,
1983
, “
The Control of Boundary-Layer Transition Using a Wave-Superposition Principle
,”
J. Fluid Mech.
,
137
, pp.
233
250
.10.1017/S0022112083002384
10.
Kachanov
,
Y. S.
,
1994
, “
Physical Mechanisms of Laminar-Boundary-Layer Transition
,”
Ann. Rev. Fluid Mech.
,
26
, pp.
411
482
.10.1146/annurev.fl.26.010194.002211
11.
Joslin
,
R. D.
,
Nicolaides
,
R. A.
,
Erlebacher
,
G.
,
Hussaini
,
M. Y.
, and
Gunzburger
,
M. D.
,
1995
, “
Active Control of Boundary-Layer Instabilities: Use of Sensors and Spectral Controller
,”
AIAA J.
,
33
(
8
), pp.
1521
1523
.10.2514/3.12930
12.
Joslin
,
R. D.
,
Erlebacher
,
G.
, and
Hussaini
,
M. Y.
,
1996
, “
Active Control of Instabilities in Laminar Boundary Layers-Overview and Concept Validation
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
494
497
.10.1115/1.2817785
13.
Sturzebecher
,
D.
, and
Nitsche
,
W.
,
2003
, “
Active Cancellation of Tollmien-Schlichtling Instabilities on a Wing Using Multi-Channel Sensor Actuator Systems
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
572
583
.10.1016/S0142-727X(03)00051-1
14.
Grundmann
,
S.
, and
Tropea
,
C.
,
2007
, “
Experimental Transition Delay Using Glow-Discharge Plasma Actuators
,”
Exp. Fluids
,
42
(
4
), pp.
653
657
.10.1007/s00348-007-0256-8
15.
Grundmann
,
S.
, and
Tropea
,
C.
,
2008
, “
Active Cancellation of Artificially Introduced Tollmien-Schlichtling Waves Using Plasma Actuators
,”
Exp. Fluids
,
44
(
5
), pp.
795
806
.10.1007/s00348-007-0436-6
16.
Grundmann
,
S.
, and
Tropea
,
C.
,
2009
,. “
Experimental Damping of Boundary-Layer Oscillations Using DBD Plasma Actuators
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
394
402
.10.1016/j.ijheatfluidflow.2009.03.004
17.
Losse
,
N. R.
,
King
,
R.
,
Zengl
,
M.
,
Rist
,
M.
, and
Noack
,
B. R.
,
2011
, “
Control of Tollmien-Schlichtling Instabilities by Finite Distributed Wall Actuation
,”
Theor. Comput. Fluid Dyn.
,
25
(
1–4
), pp.
167
178
.10.1007/s00162-010-0192-8
18.
Duchmann
,
A.
,
Kurz
,
A.
,
Widmann
,
A.
,
Grundmann
,
S.
, and
Tropea
,
C.
,
2012
, “
Characterization of Tollmien-Schlichting Wave Damping by DBD Plasma Actuators Using Phase-Locked PIV
,”
AIAA
Paper No. 2012-0903. 10.2514/6.2012-0903
19.
Kurz
,
A.
,
Tropea
,
C.
,
Grundmann
,
S.
,
Forte
,
M.
,
Vermeersch
,
O.
,
Seraudie
,
A.
,
Arnal
,
D.
,
Goldin
,
N.
, and
King
,
R.
,
2012
, “
Transition Delay Using DBD Plasma Actuators in Direct Frequency Mode
,”
AIAA
Paper No. 2012-2945. 10.2514/6.2012-2945
20.
Kurz
,
A.
,
Tropea
,
C.
,
Grundmann
,
S.
,
Goldin
,
N.
, and
King
,
R.
,
2012
, “
Development of Active Wave Cancellation Using DBD Plasma Actuators for In-Flight Transition Control
,”
AIAA
Paper No. 2012-2946.10.2514/6.2012-2946
21.
Widmann
,
A.
,
Duchmann
,
A.
,
Kurz
,
A.
,
Grundmann
,
S.
, and
Tropea
,
C.
,
2012
, “
Measuring Tollmien-Schlichting Waves Using Phased-Averaged Particle Image Velocimetry
,”
Exp. Fluids
,
53
(
3
), pp.
707
715
.10.1007/s00348-012-1315-3
22.
Kotsonis
,
M.
,
Giepman
,
R.
,
Hulshoff
,
S.
, and
Veldhuis
,
L.
,
2013
, “
Numerical Study of the Control of Tollmien-Schlichtling Waves Using Plasma Actuators
,”
AIAA J.
,
51
(
10
), pp.
2353
2364
.10.2514/1.J051766
23.
Dadfar
,
R.
,
Semeraro
,
O.
, and
Henningson
,
D. S.
,
2013
, “
Output Feedback Control of Blasius Flow With Leading Edge Using Plasma Actuator
,”
AIAA J.
,
51
(
9
), pp.
2192
2207
.10.2514/1.J052141
24.
Dadfar
,
R.
,
Hanfi
,
A.
, and
Henningson
,
D. S.
,
2018
, “
Control of Instabilities in an Unswept Wing Boundary Layer
,”
AIAA J.
,
56
(
5
), pp.
1750
1759
.10.2514/1.J056415
25.
Barckmann
,
K.
,
Tropea
,
C.
, and
Grundmann
,
S.
,
2015
, “
Attenuation of Tollmien-Schlichtling Waves Using Plasma Actuator Vortex Generators
,”
AIAA J.
,
55
(
5
), pp.
1384
1388
.
26.
Amitay
,
M.
,
Tuna
,
B. A.
, and
Dell'Orso
,
H.
,
2016
, “
Identification and Mitigation of T-S Waves Using Localized Dynamic Surface Modification
,”
Phys. Fluids
,
28
(
6
), p.
064103
.10.1063/1.4953844
27.
Fransson
,
J. H. M.
, and
Talamelli
,
A.
,
2012
, “
On the Generation of Steady Streamwise Streaks in Flat-Plate Boundary Layers
,”
J. Fluid Mech.
,
698
, pp.
211
234
.10.1017/jfm.2012.80
28.
Bewley
,
T. R.
,
Moin
,
P.
, and
Teman
,
R.
,
2001
, “
DNS-Based Predictive Control of Turbulence: An Optimal Benchmark for Feedback Algorithms
,”
J. Fluid Mech.
,
447
, pp.
179
225
.10.1017/S0022112001005821
29.
Sipp
,
D.
,
Marquet
,
O.
,
Meliga
,
P.
, and
Barbagallo
,
A.
,
2010
, “
Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach
,”
Appl. Mech. Rev.
,
63
(
3
), p.
030801
.10.1115/1.4001478
30.
Belson
,
B. A.
,
Semeraro
,
O.
,
Rowley
,
C. W.
, and
Henningson
,
D. S.
,
2013
, “
Feedback Control of Instabilities in the Two-Dimensional Blasius Boundary Layer: The Role of Sensors and Actuators
,”
Phys. Fluids
,
25
(
5
), p.
054106
.10.1063/1.4804390
31.
Semeraro
,
O.
,
Bagheri
,
S.
,
Brandt
,
L.
, and
Henningson
,
D. S.
,
2013
, “
Transition Delay in a Boundary Layer Flow Using Active Control
,”
J. Fluid Mech.
,
731
, pp.
288
311
.10.1017/jfm.2013.299
32.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2019
, “
Direct Numerical Simulation of Transition Control Via Local Dynamic Surface Modification
,”
AIAA J.
,
57
(
8
), pp.
3309
3321
.10.2514/1.J057664
33.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2019
, “
Investigation of Transition Delay by Dynamic Surface Deformation
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121203
.10.1115/1.4043859
34.
Beam
,
R.
, and
Warming
,
R.
,
1978
, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
,
16
(
4
), pp.
393
402
.10.2514/3.60901
35.
Gordnier
,
R. E.
, and
Visbal
,
M. R.
,
1993
, “
Numerical Simulation of Delta-Wing Roll
,”
AIAA
Paper No. 93-0554. 10.2514/6.93-0554
36.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes
,”
AIAA
Paper No. 81-1259.10.2514/6.81-1259
37.
Pulliam
,
T. H.
, and
Chaussee
,
D. S.
,
1981
, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
,
39
(
2
), pp.
347
363
.10.1016/0021-9991(81)90156-X
38.
Lele
,
S. A.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.10.1016/0021-9991(92)90324-R
39.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
1999
, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
,
37
(
10
), pp.
1231
1239
.10.2514/2.591
40.
Gaitonde
,
D.
,
Shang
,
J. S.
, and
Young
,
J. L.
,
1997
, “
Practical Aspects of High-Order Accurate Finite Volume Schemes for Electromagnetics
,”
AIAA
Paper No. 97-0363. 10.2514/6.97-0363
41.
Gaitonde
,
D.
, and
Visbal
,
M. R.
,
1998
, “
High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI
,” Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, Report No. AFRL-VA-WP-TR-1998-3060.
42.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2002
, “
Application of Large-Eddy Simulation to Supersonic Compression Ramps
,”
AIAA J.
,
40
(
8
), pp.
1574
1581
.10.2514/2.1826
43.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2003
, “
Large-Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control
,”
AIAA J.
,
41
(
8
), pp.
1452
1462
.10.2514/2.2128
44.
Sherer
,
S. E.
, and
Scott
,
J. N.
,
2005
, “
High-Order Compact Finite Difference Methods on General Overset Grids
,”
J. Comput. Phys.
,
210
(
2
), pp.
459
496
.10.1016/j.jcp.2005.04.017
45.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2005
, “
Numerical Simulation of Separation Control for Transitional Highly-Loaded Low-Pressure Turbines
,”
AIAA J.
,
43
(
9
), pp.
1958
1967
.10.2514/1.12376
46.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2007
, “
Direct Numerical Simulation of Flow Past an Array of Distributed Roughness Elements
,”
AIAA J.
,
45
(
8
), pp.
1967
1976
.10.2514/1.25916
47.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2009
, “
Large Eddy Simulation of Plasma-Based Control Strategies for Bluff Body Flow
,”
AIAA J.
,
47
(
3
), pp.
717
729
.10.2514/1.39168
48.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2010
, “
Large-Eddy Simulation of Plasma-Based Turbulent Boundary-Layer Separation Control
,”
AIAA J.
,
48
(
12
), pp.
2793
2810
.10.2514/1.J050014
49.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2014
, “
Numerical Simulation of Excrescence Generated Transition
,”
AIAA J.
,
52
(
2
), pp.
385
397
.10.2514/1.J052530
50.
Steinbrenner
,
J. P.
,
Chawner
,
J. P.
, and
Fouts
,
C. L.
,
1991
, “
The GRIDGEN 3D Multiple Block Grid Generation System, Volume II: User's Manual
,” Wright Research and Development Center, Wright-Patterson AFB, Dayton, OH, Report No. WRDC-TR-90-3022.
51.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2001
, “
Very High-Order Spatially Implicit Schemes for Computational Acoustics on Curvilinear Meshes
,”
J. Compsut. Acoust.
,
9
(
4
), pp.
1259
1286
.10.1142/S0218396X01000541
52.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.10.1109/MCS.2006.1636313
53.
Moore
,
E. H.
,
1920
, “
On the Reciprocal of the General Algebraic Matrix
,”
Bull. Am. Math. Soc.
,
26
(
9
), pp.
394
395
.
54.
Penrose
,
R.
,
1955
, “
A Generalized Inverse for Matrices
,”
Proc. Cambridge Philos. Soc.
,
51
(
3
), pp.
406
413
.10.1017/S0305004100030401
55.
Schlichting
,
H.
,
1960
,
Boundary-Layer Theory
, 4th ed.,
McGraw-Hill
,
New York
.
56.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.10.2514/1.J050232
You do not currently have access to this content.