Abstract

Mechanical degradation of dilute solutions of polyethylene oxide (PEO) via chain scission was investigated within a turbulent pipe flow. Comparisons of the drag reduction performance with and without degradation were made by matching the onset of drag reduction conditions, which has been shown for PEO to be related to the mean molecular weight. The bulk flow behavior of both the degraded and nondegraded samples were generally consistent with trends observed in the literature, but a subset of conditions showed significant deviation in the slope increment (drag reduction performance) between the degraded and nondegraded samples. When they deviated, the degraded samples were consistently more efficient than the nondegraded samples even though they had the same mean molecular weight. The deviations were shown to scale with the normalized difference between the initial and final molecular weights. The current data and analysis as well as the literature suggest that the deviations in the polymer performance (slope increment) are related to changes in the molecular weight distribution. More specifically, the improved performance of the degraded samples relative to the nondegraded ones at the mean molecular weight of the degraded sample indicates an excess of longer polymer chains since the higher chain fractions in a degraded solution more effectively control the flow properties when within a certain degree of degradation and Reynolds number.

References

References
1.
Mysels
,
K. J.
,
1947
, “
Flow of Thickened Fluids
,” U.S. Patent No. 2,492,173.
2.
Toms
,
B. A.
,
1949
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
Proceedings of the First International Congress on Rheology
, Vol.
2
, North-Holland, Amsterdam, Sept. 21–24, 1948, pp.
135
141
.
3.
Toms
,
B. A.
,
1949
, “
Detection of a Wall Effect in Laminar Flow of Solutions of a Linear Polymer
,”
J. Colloid Sci.
,
4
(
5
), pp.
511
521
.10.1016/0095-8522(49)90047-1
4.
Hoyt
,
J. W.
,
1972
, “
The Effect of Additives on Fluid Friction
,”
ASME J. Fluids Eng.
,
94
(
2
), pp.
258
285
.10.1115/1.3425401
5.
Burger
,
E. D.
,
Chorn
,
L. G.
, and
Perkins
,
T. K.
,
1980
, “
Studies of Drag Reduction Conducted Over a Broad Range of Pipeline Conditions When Flowing Prudhoe Bay Crude Oil
,”
J. Rheol.
,
24
(
5
), pp.
603
626
.10.1122/1.549579
6.
Sellin
,
R.
,
Hoyt
,
J.
,
Poliert
,
J.
, and
Scrivener
,
O.
,
1982
, “
The Effect of Drag Reducing Additives on Fluid Flows and Their Industrial Applications: Part 2—Present Applications and Future Proposals
,”
J. Hydraulic Res.
,
20
(
3
), pp.
235
292
.10.1080/00221688209499488
7.
Fruman
,
D. H.
, and
Aflalo
,
S. S.
,
1989
, “
Tip Vortex Cavitation Inhibition by Drag-Reducing Polymer Solutions
,”
ASME J. Fluids Eng.
,
111
(
2
), pp.
211
216
.10.1115/1.3243625
8.
White
,
C. M.
, and
Mungal
,
M. G.
,
2008
, “
Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
235
256
.10.1146/annurev.fluid.40.111406.102156
9.
Elbing
,
B. R.
,
Dowling
,
D. R.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
,
2010
, “
Diffusion of Drag-Reducing Polymer Solutions Within a Rough-Walled Turbulent Boundary Layer
,”
Phys. Fluids
,
22
(
4
), p.
045102
.10.1063/1.3371957
10.
Elbing
,
B. R.
,
Winkel
,
E. S.
,
Ceccio
,
S. L.
,
Perlin
,
M.
, and
Dowling
,
D. R.
,
2010
, “
High-Reynolds-Number Turbulent-Boundary-Layer Wall-Pressure Fluctuations With Dilute Polymer Solutions
,”
Phys. Fluids
,
22
(
8
), p.
085104
.10.1063/1.3478982
11.
Elbing
,
B. R.
,
Solomon
,
M. J.
,
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2011
, “
Flow-Induced Degradation of Drag-Reducing Polymer Solutions Within a High-Reynolds-Number Turbulent Boundary Layer
,”
J. Fluid Mech.
,
670
, pp.
337
364
.10.1017/S0022112010005331
12.
Elbing
,
B. R.
,
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2013
, “
Modification of the Mean Near-Wall Velocity Profile of a High-Reynolds Number Turbulent Boundary Layer With the Injection of Drag-Reducing Polymer Solutions
,”
Phys. Fluids
,
25
(
8
), p.
085103
.10.1063/1.4817073
13.
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2016
, “
Freeman Scholar Review: Passive and Active Skin-Friction Drag Reduction in Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091104
.10.1115/1.4033295
14.
Elbing
,
B. R.
,
2018
, “
Flow-Assisted Polymer Degradation in Turbulent Boundary Layers
,”
Proceedings of the AIChE Annual Meeting
, Area 01C Interfacial Phenomena 590e, Pittsburgh, PA, Oct. 28–Nov. 2, 2018, pp.
1
8
.
15.
McGary
,
C. W.
, Jr.
,
1960
, “
Degradation of Poly(Ethylene Oxide)
,”
J. Polym. Sci.
,
46
(
147
), pp.
51
57
.10.1002/pol.1960.1204614705
16.
Shin
,
H.
,
1965
, “
Reduction of Drag in Turbulence by Dilute Polymer Solutions
,” Ph.D. dissertation,
Massachusetts Institute of Technology
, Cambridge, MA.
17.
Bailey
,
F. E.
, Jr.
, and
Koleske
,
J. V.
,
1976
,
Poly(Ethylene Oxide)
,
Academic Press
,
New York
.
18.
Bortel
,
E.
, and
Lamot
,
R.
,
1977
, “
Examination of the Breakdown of High Molecular Weight Polyethylene Oxides in the Solid State
,”
Macromol. Chem. Phys.
,
178
(
9
), pp.
2617
2628
.10.1002/macp.1977.021780913
19.
Moussa
,
T.
, and
Tiu
,
C.
,
1994
, “
Factors Affecting Polymer Degradation in Turbulent Pipe Flow
,”
Chem. Eng. Sci.
,
49
(
10
), pp.
1681
1692
.10.1016/0009-2509(93)E0029-C
20.
Fore
,
R. S.
,
Szwalek
,
J.
, and
Sirviente
,
A.
,
2005
, “
The Effects of Polymer Solution Preparation and Injection on Drag Reduction
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
536
549
.10.1115/1.1905644
21.
Layec-Raphalen
,
M. N.
, and
Layec
,
Y.
,
1985
, “
Influence of Molecular Parameters on Laminar Non-Newtonian and on Turbulent Flows of Dilute Polymer Solutions
,”
The Influence of Polymer Additives on Velocity and Temperature Fields, International Union of Theoretical and Applied Mechanics
(Deutsche Rheologische Gasellschaft),
B.
Gampert
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
89
100
.
22.
Yarin
,
A. L.
,
1991
, “
Strong Flows of Polymeric Liquids: Part 2. Mechanical Degradation of Macromolecules
,”
J. Non-Newtonian Fluid Mech.
,
38
(
2–3
), pp.
127
136
.10.1016/0377-0257(91)83002-L
23.
Yarin
,
A. L.
,
1993
,
Free Liquid Jets and Films: Hydrodynamics and Rheology
,
Longman Publishing Group
,
New York
.
24.
Yarin
,
A. L.
,
1997
, “
On the Mechanism of Turbulent Drag Reduction in Dilute Polymer Solutions: Dynamics of Vortex Filaments
,”
J. Non-Newtonian Fluid Mech.
,
69
(
2–3
), pp.
137
153
.10.1016/S0377-0257(96)01526-1
25.
Zaitoun
,
A.
,
Makakou
,
P.
,
Blin
,
N.
,
Al-Maamari
,
R. S.
,
Al-Hashmi
,
A.-A. R.
, and
Abdel-Goad
,
M.
,
2012
, “
Shear Stability of EOR Polymers
,”
SPE J.
,
17
(
02
), pp.
335
339
.10.2118/141113-PA
26.
Fontaine
,
A.
,
Petrie
,
H.
, and
Brungart
,
T.
,
1992
, “
Velocity Profile Statistics in a Turbulent Boundary Layer With Slot-Injected Polymer
,”
J. Fluid Mech.
,
238
, pp.
435
466
.10.1017/S0022112092001770
27.
Petrie
,
H.
,
Fontaine
,
A.
,
Money
,
M.
, and
Deutsch
,
S.
,
2005
, “
Experimental Study of Slot-Injected Polymer Drag Reduction
,”
Proceedings of the Second International Symposium on Seawater Drag Reduction
,
Busan, Korea
, May 23–26, pp.
605
620
.
28.
Elbing
,
B. R.
,
Winkel
,
E. S.
,
Solomon
,
M. J.
, and
Ceccio
,
S. L.
,
2009
, “
Degradation of Homogeneous Polymer Solutions in High Shear Turbulent Pipe Flow
,”
Exp. Fluids
,
47
(
6
), pp.
1033
1044
.10.1007/s00348-009-0693-7
29.
Culter
,
J. D.
,
Zakin
,
J. L.
, and
Patterson
,
G. K.
,
1975
, “
Mechanical Degradation of Dilute Solutions of High Polymers in Capillary Tube Flow
,”
J. Appl. Polym. Sci.
,
19
(
12
), pp.
3235
3240
.10.1002/app.1975.070191210
30.
Vanapalli
,
S. A.
,
Islam
,
M. T.
, and
Solomon
,
M. J.
,
2005
, “
Scission-Induced Bounds on Maximum Polymer Drag Reduction in Turbulent Flow
,”
Phys. Fluids
,
17
(
9
), p.
095108
.10.1063/1.2042489
31.
Paterson
,
R. W.
, and
Abernathy
,
F. H.
,
1970
, “
Turbulent Flow Drag Reduction and Degradation With Dilute Polymer Solutions
,”
J. Fluid Mech.
,
43
(
4
), pp.
689
710
.10.1017/S0022112070002677
32.
Yu
,
J. F. S.
,
Zakin
,
J. L.
, and
Patterson
,
G. K.
,
1979
, “
Mechanical Degradation of High Molecular Weight Polymers in Dilute Solution
,”
J. Appl. Polym. Sci.
,
23
(
8
), pp.
2493
2512
.10.1002/app.1979.070230826
33.
Hinch
,
E. J.
,
1977
, “
Mechanical Models of Dilute Polymer Solutions in Strong Flows
,”
Phys. Fluids
,
20
(
10
), pp.
S22
S30
.10.1063/1.861735
34.
Horn
,
A.
, and
Merrill
,
E.
,
1984
, “
Midpoint Scission of Macromolecules in Dilute Solution in Turbulent Flow
,”
Nature
,
312
(
5990
), pp.
140
141
.10.1038/312140a0
35.
Odell
,
J. A.
,
Keller
,
A.
, and
Miles
,
M. J.
,
1983
, “
Method for Studying Flow-Induced Polymer Degradation: Verification of Chain Halving
,”
Polym. Commun.
,
24
(
1
), pp.
7
10
.
36.
Sim
,
H.
,
Khomami
,
B.
, and
Sureshkumar
,
R.
,
2007
, “
Flow–Induced Chain Scission in Dilute Polymer Solutions: Algorithm Development and Results for Scission Dynamics in Elongational Flow
,”
J. Rheol.
,
51
(
6
), pp.
1223
1251
.10.1122/1.2789945
37.
Hunston
,
D. L.
, and
Zakin
,
J. L.
,
1980
, “
Flow‐Assisted Degradation in Dilute Polystyrene Solutions
,”
Polym. Eng. Sci.
,
20
(
7
), pp.
517
523
.10.1002/pen.760200713
38.
Gampert
,
B.
, and
Wagner
,
P.
,
1985
, “
The Influence of Molecular Weight and Molecular Weight Distribution on Drag Reduction and Mechanical Degradation in Turbulent Flows of Highly Dilute Polymer Solutions
,”
The Influence of Polymer Additives on Velocity and Temperature Fields, International Union of Theoretical and Applied Mechanics
(Deutsche Rheologische Gasellschaft),
B.
Gampert
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
71
85
.
39.
Habibpour
,
M.
, and
Clark
,
P. E.
,
2017
, “
Drag Reduction Behavior of Hydrolyzed Polyacrylamide/Xanthan Gum Mixed Polymer Solutions
,”
Pet. Sci.
,
14
(
2
), pp.
412
423
.10.1007/s12182-017-0152-7
40.
Lumley
,
J. L.
,
1973
, “
Drag Reduction in Turbulent Flow by Polymer Additives
,”
J. Polym. Sci.
,
7
(
1
), pp.
263
290
.10.1002/pol.1973.230070104
41.
Vanapalli
,
S. A.
,
Ceccio
,
S. L.
, and
Solomon
,
M. J.
,
2006
, “
Universal Scaling for Polymer Chain Scission in Turbulence
,”
Proc. Natl. Acad. Sci.
,
103
(
45
), pp.
16660
16665
.10.1073/pnas.0607933103
42.
Grandbois
,
M.
,
Beyer
,
M.
,
Rief
,
M.
,
Clausen-Schaumann
,
H.
, and
Gaub
,
H. E.
,
1999
, “
How Strong is a Covalent Bond?
,”
Science
,
283
(
5408
), pp.
1727
1730
.10.1126/science.283.5408.1727
43.
White
,
C. M.
,
Somandepalli
,
V. S. R.
, and
Mungal
,
M. G.
,
2004
, “
The Turbulence Structure of Drag-Reduced Boundary Layer Flow
,”
Exp. Fluids
,
36
(
1
), pp.
62
69
.10.1007/s00348-003-0630-0
44.
Hou
,
Y. X.
,
Somandepalli
,
V. S. R.
, and
Mungal
,
M. G.
,
2008
, “
Streamwise Development of Turbulent Boundary-Layer Drag Reduction With Polymer Injection
,”
J. Fluid Mech.
,
597
, pp.
31
66
.10.1017/S0022112007009718
45.
Somandepalli
,
V. S. R.
,
Hou
,
Y. X.
, and
Mungal
,
M. G.
,
2010
, “
Concentration Flux Measurements in a Polymer Drag-Reduced Turbulent Boundary Layer
,”
J. Fluid Mech.
,
644
, pp.
281
319
.10.1017/S0022112009992382
46.
White
,
C. M.
,
Dubief
,
Y.
, and
Klewicki
,
J.
,
2012
, “
Re-Examining the Logarithmic Dependence of the Mean Velocity Distribution in Polymer Drag Reduced Wall-Bounded Flow
,”
Phys. Fluids
,
24
(
2
), p.
021701
.10.1063/1.3681862
47.
Escudier
,
M.
,
Rosa
,
S.
, and
Poole
,
R.
,
2009
, “
Asymmetry in Transitional Pipe Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newtonian Fluid Mech.
,
161
(
1–3
), pp.
19
29
.10.1016/j.jnnfm.2009.04.001
48.
Farsiani
,
Y.
,
Saeed
,
Z.
, and
Elbing
,
B. R.
,
2019
, “
Modification of Turbulent Boundary Layer in the Homogeneous Polymeric Drag Reduced Flow
,”
APS Division of Fluid Dynamics Annual Meeting
, Bulletin of the American Physical Society, 64(13), Seattle, WA, Nov. 23–26, Paper No. M01.
49.
Farsiani
,
Y.
,
Saeed
,
Z.
,
Jayaraman
,
B.
, and
Elbing
,
B. R.
,
2020
, “
Modification of Turbulent Boundary Layer Coherent Structures With Drag Reducing Polymer Solution
,”
Phys. Fluids
,
32
(
1
), p.
015107
.10.1063/1.5127293
50.
Kim
,
C. A.
,
Kim
,
J. T.
,
Lee
,
K.
,
Choi
,
H. J.
, and
Jhon
,
M. S.
,
2000
, “
Mechanical Degradation of Dilute Polymer Solutions Under Turbulent Flow
,”
Polymers
,
41
(
21
), pp.
7611
7615
.10.1016/S0032-3861(00)00135-X
51.
Kalashnikov
,
V. N.
,
2002
, “
Degradation Accompanying Turbulent Drag Reduction by Polymer Additives
,”
J. Non-Newtonian Fluid Mech.
,
103
(
2–3
), pp.
105
121
.10.1016/S0377-0257(01)00156-2
52.
Draad
,
A. A.
,
Kuiken
,
G.
, and
Nieuwstadt
,
F.
,
1998
, “
Laminar–Turbulent Transition in Pipe Flow for Newtonian and Non-Newtonian Fluids
,”
J. Fluid Mech.
,
377
, pp.
267
312
.10.1017/S0022112098003139
53.
Petrie
,
H. L.
,
Deutsch
,
S.
,
Brungart
,
T. A.
, and
Fontaine
,
A. A.
,
2003
, “
Polymer Drag Reduction With Surface Roughness in Flat-Plate Turbulent Boundary Layer Flow
,”
Exp. Fluids
,
35
(
1
), pp.
8
23
.10.1007/s00348-003-0589-x
54.
De Gennes
,
P.-G.
,
1979
,
Scaling Concepts in Polymer Physics
,
Cornell University Press
,
Ithaca, NY
.
55.
Bailey
,
F. E.
, Jr.
, and
Callard
,
R. W.
,
1959
, “
Some Properties of Poly(Ethylene Oxide) in Aqueous Solution
,”
J. Appl. Polym. Sci.
,
1
(
1
), pp.
56
62
.10.1002/app.1959.070010110
56.
Lander
,
M.
,
2018
, “
Preparation and Characterization of Polyethylene-Oxide (PEO) Solution
,”
M.S. thesis
,
Oklahoma State University
, Stillwater, OK.https://shareok.org/handle/11244/317805
57.
McKeon
,
B. J.
,
2007
, “
Measurement of Pressure With Wall Tappings
,”
Handbook of Experimental Fluid Mechanics
,
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
, eds.,
Springer
,
Heidelberg, Germany
, pp.
180
184
.
58.
Kulik
,
V. M.
,
2001
, “
Drag Reduction Change of Polyethyleneoxide Solutions in Pipe Flow
,”
Exp. Fluids
,
31
(
5
), pp.
558
566
.10.1007/s003480100331
59.
Berman
,
N. S.
,
1977
, “
Drag Reduction of the Highest Molecular Weight Fractions of Polyethylene Oxide
,”
Phys. Fluids
,
20
(
5
), pp.
715
718
.10.1063/1.861940
60.
Virk
,
P. S.
,
Merrill
,
E. W.
,
Mickle
,
H. S.
,
Smith
,
K. A.
, and
Mollo-Christensen
,
E. L.
,
1967
, “
The Toms Phenomenon: Turbulent Pipe Flow of Dilute Polymer Solutions
,”
J. Fluid Mech.
,
30
(
2
), pp.
305
328
.10.1017/S0022112067001442
61.
Virk
,
P. S.
,
1975
, “
Drag Reduction Fundamentals
,”
AIChE J.
,
21
(
4
), pp.
625
656
.10.1002/aic.690210402
62.
Dubief
,
Y.
,
White
,
C. M.
,
Terrapon
,
V. E.
,
Shaqfeh
,
E. S.
,
Moin
,
P.
, and
Lele
,
S. K.
,
2004
, “
On the Coherent Drag-Reducing and Turbulence-Enhancing Behavior of Polymers in Wall Flows
,”
J. Fluid Mech.
,
514
, pp.
271
280
.10.1017/S0022112004000291
63.
Gupta
,
V.
,
Sureshkumar
,
R.
, and
Khomami
,
B.
,
2004
, “
Polymer Chain Dynamics in Newtonian and Viscoelastic Turbulent Channel Flows
,”
Phys. Fluids
,
16
(
5
), pp.
1546
1566
.10.1063/1.1687415
64.
Winkel
,
E. S.
,
Oweis
,
G. F.
,
Vanapalli
,
S. A.
,
Dowling
,
D. R.
,
Perlin
,
M.
,
Solomon
,
M. J.
, and
Ceccio
,
S. L.
,
2009
, “
High-Reynolds-Number Turbulent Boundary Layer Friction Drag Reduction From Wall-Injected Polymer Solutions
,”
J. Fluid Mech.
,
621
, pp.
259
288
.10.1017/S0022112008004874
65.
Elbing
,
B. R.
,
Daniel
,
L.
,
Farsiani
,
Y.
, and
Petrin
,
C. E.
,
2018
, “
Design and Validation of a Recirculating, High-Reynolds Number Water Tunnel
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081102
.10.1115/1.4039509
You do not currently have access to this content.