Abstract

In this study, a numerical simulation method based on Eulerian–Eulerian model and population balance model (PBM) (i.e., computational fluid dynamics (CFD)–PBM coupling model) was developed to investigate the gas–liquid two-phase performance of centrifugal pump under bubble inflow. The realizable k–ε model turbulence model was implemented in ansysfluent solver. The air and water were employed as the working fluids, which was consistent with the experiment. The water head and pressure increment obtained by the experiment were used to validate the numerical method. The results show that the CFD–PBM coupling model is superior to the Eulerian–Eulerian model, particularly in the “surging” conditions. Using the CFD–PBM coupling model, the influences of parameters, such as inlet gas volume fraction, liquid phase flowrate, and rotational speed, on the head and efficiency of the centrifugal pump were investigated. Under the design condition, when the inlet gas volume fraction increases from 3% to 5%, the bubbles form air mass and stagnate in the impeller channel. The stagnated air mass can hardly be discharged with the liquid phase. Thus, the pump head drops suddenly, i.e., the surging occurs. The two-phase performance of centrifugal pump can be improved under the surging condition by increasing the liquid flowrate and the rotational speed to a certain value. The results contribute to an alternative simulation method to investigate the characteristics of bubble flow in pump and shed new lights on the understanding of the performance of centrifugal pumps under two-phase flow conditions.

References

References
1.
Wang
,
J.
,
Wang
,
Y.
,
Liu
,
H.
,
Si
,
Q.
, and
Dular
,
M.
,
2018
, “
Rotating Corrected-Based Cavitation Model for a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111301
.10.1115/1.4040068
2.
Olimstad
,
G.
,
Osvoll
,
M.
, and
Finstad
,
P.
,
2018
, “
Very Low Specific Speed Centrifugal Pump-Hydraulic Design and Physical Limitations
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071403
.10.1115/1.4039250
3.
Stel
,
H.
,
Ofuchi
,
E.
,
Sabino
,
R.
,
Ancajima
,
F.
,
Bertoldi
,
D.
,
Marcelino
,
M.
, and
Morales
,
R.
,
2019
, “
Investigation of the Motion of Bubbles in a Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
041230
.10.1115/1.4041230
4.
Fu
,
Q.
,
Zhang
,
F.
,
Zhu
,
R.
, and
Wang
,
X.
,
2016
, “
Effect of Gas Quantity on Two-Phase Flow Characteristic of a Mixed-Flow Pump
,”
Adv. Mech. Eng.
,
8
(
4
), pp.
1
11
.10.1177/1687814016644578
5.
Furuya
,
O.
,
1985
, “
An Analytical Model for Prediction of Two-Phase (Non-Condensable) Flow Pump Performance
,”
ASME J. Fluid Eng.
,
107
(
1
), pp.
139
147
.10.1115/1.3242432
6.
Murakami
,
M.
, and
Minemura
,
K.
,
1974
, “
Effects of Entrained Air on the Performance of a Centrifugal Pump (1st Report, Performance and Flow Conditions)
,”
Bull. JSME
,
17
(
110
), pp.
1047
1055
.10.1299/jsme1958.17.1047
7.
Murakami
,
M.
, and
Minemura
,
K.
,
1974
, “
Effects of Entrained Air on the Performance of a Centrifugal Pump (2nd Report, Effects of Number of Blades
),”
Bull. JSME
,
17
(
112
), pp.
1286
1295
.10.1299/jsme1958.17.1286
8.
Pessoa
,
R.
, and
Prado
,
M.
,
2003
, “
Two-Phase Flow Performance for Electrical Submersible Pump Stages
,”
SPE Prod. Fac.
,
18
(
01
), pp.
13
27
.10.2118/81910-PA
9.
Beltur
,
R.
,
Prado
,
M.
,
Duran
,
J.
, and
Pessoa
,
R.
,
2003
, “
Analysis of Experimental Data of ESP Performance Under Two-Phase Flow Conditions
,”
SPE Production and Operations Symposium
, Oklahoma City, OK, Mar. 23–26, Paper No.
SPE 80921
.10.2118/80921-MS
10.
Barrios
,
L.
,
2007
,
Visualization and Modeling of Multiphase Performance Inside an Electrical Submersible Pump
,
The University of Tulsa,
Tulsa, OK.
11.
Barrios
,
L.
, and
Prado
,
M.
,
2011
, “
Experimental Visualization of the Two-Phase Flow Inside an Electrical Submersible Pump Stage
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), pp.
1
15
.10.1115/1.4004967
12.
Gamboa
,
J.
, and
Prado
,
M.
,
2010
, “
Visualization Study of Performance Breakdown in Two-Phase Performance of an Electrical Submersible Pump
,”
Proceedings of the 26th International Pump Users Symposium
, College Station, TX, Mar. 16–18, pp.
58
74
.
13.
Verde
,
W.
,
2011
,
Experimental Study of BCS Pumps Operating With Gas-Liquid Biphasic Flow
,
The University of Campinas
,
Campinas, São Paulo, Brazil
.
14.
Zhu
,
J.
,
Guo
,
X.
,
Liang
,
F.
, and
Zhang
,
H.
,
2017
, “
Experimental Study and Mechanistic Modeling of Pressure Surging in Electrical Submersible Pump
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
625
636
.10.1016/j.jngse.2017.06.027
15.
Caridad
,
J.
, and
Kenyery
,
F.
,
2004
, “
CFD Analysis of Electric Submersible Pumps (ESP) Handling Two-Phase Mixtures
,”
ASME J. Energy Resour. Technol.
,
126
(
2
), pp.
99
104
.10.1115/1.1725156
16.
Caridad
,
J.
,
Asuaje
,
M.
,
Kenyery
,
F.
,
Tremante
,
A.
, and
Aguillón
,
O.
,
2008
, “
Characterization of a Centrifugal Pump Impeller Under Two-Phase Flow Conditions
,”
J. Pet. Sci. Eng.
,
63
(
1–4
), pp.
18
22
.10.1016/j.petrol.2008.06.005
17.
Barrios
,
L.
,
Prado
,
M.
, and
Kenyery
,
F.
,
2009
, “
CFD Modeling Inside an Electrical Submersible Pump in Two-Phase Flow Condition
,”
ASME
Paper No. FEDSM2009-7849210.1115/FEDSM2009-78492.
18.
Zhu
,
J.
,
2017
,
Experiments, CFD Simulation and Modeling of ESP Performance Under Gassy Conditions
,
The University of Tulsa
,
Tulsa, OK
.
19.
Zhu
,
J.
, and
Zhang
,
H.
,
2018
, “
A Review of Experiments and Modeling of Gas-Liquid Flow in Electrical Submersible Pumps
,”
Energies
,
11
(
1
), p.
180
.10.3390/en11010180
20.
Zhu
,
J.
,
Zhu
,
H.
,
Zhang
,
J.
, and
Zhang
,
H.
,
2019
, “
A Numerical Study on Flow Patterns Inside an Electrical Submersible Pump (ESP) and Comparison With Visualization Experiments
,”
J. Pet. Sci. Eng.
,
173
, pp.
339
350
.10.1016/j.petrol.2018.10.038
21.
Gudigopuram
,
S.
,
2017
,
Experimental and CFD Simulation of Helicon-Axial Pump
,
Texas A&M University
,
College Station, TX
.
22.
Stern
,
F.
,
Wilson
,
R.
,
Coleman
,
H.
, and
Paterson
,
E.
,
1999
, “
Verification and Validation of CFD Simulations
,”
University of Alabama in Huntsville
, Huntsville, AL, Report No. 407.
23.
ANSYS,
2016
, “
ANSYS, Release 16.0 ANSYS Documentation
,” ANSYS, Washington County, PA.
24.
Yang
,
H.
,
Vanka
,
S.
, and
Thomas
,
B.
,
2018
, “
A Hybrid Eulerian–Eulerian Discrete-Phase Model of Turbulent Bubbly Flow
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101202
.10.1115/1.4039793
25.
Zhu
,
J.
, and
Zhang
,
H.
,
2014
, “
CFD Simulation of ESP Performance and Bubble Size Estimation Under Gassy Conditions
,”
Society of Petroleum Engineers, in SPE Annual Technical Conference and Exhibition
, Amsterdam, The Netherlands, Oct. 27–29, Paper No.
SPE-170727-MS
.10.2118/170727-MS
26.
Zhu
,
J.
, and
Zhang
,
H.
,
2017
, “
Modeling of Gas Bubble Size in Electrical Submersible Pump (ESP) Through Numerical Simulation
,”
SPE Annual Technical Conference and Exhibition
, SPE Production & Operations, 32(3), pp.
267
278
.
27.
Schiller
,
L.
, and
Naumann
,
L.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Ver. Dtsch. Ing.
,
77
(
1
), pp.
318
320
.
28.
Drew
,
D.
, and
Lahey
,
R.
,
1993
,
In Particulate Two-Phase Flow
(
Butterworth-Heinemann Series in Chemical Engineering)
,
Cambridge: Cambridge University Press, Cambridge, UK
, pp.
509
566
.
29.
Legendre
,
D.
, and
Magnaudet
,
J.
,
1998
, “
The Lift Force on a Spherical Bubble in a Viscous Linear Shear Flow
,”
J. Fluid Mech.
,
368
, pp.
81
126
.10.1017/S0022112098001621
30.
Luo
,
H.
,
1993
,
Coalescence, Breakup and Liquid Circulation in Bubble Column Reactors
,
The University of Trondheim
,
Dragvold, Norway
.
31.
Luo
,
H.
, and
Svendsen
,
H.
,
1996
, “
Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions
,”
J. AIChE
,
42
(
5
), pp.
1225
1233
.10.1002/aic.690420505
32.
Chen
,
Y.
,
Patil
,
A.
,
Chen
,
Y.
,
Bai
,
C.
,
Wang
,
Y.
, and
Morrison
,
G.
,
2019
, “
Numerical Study on the First Stage Head Degradation in an Electrical Submersible Pump With Population Balance Model
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022003
.10.1115/1.4041408
33.
Wang
,
T.
,
Wang
,
J.
, and
Jin
,
Y.
,
2006
, “
A CFD-PBM Coupled Model for Gas-Liquid Flows
,”
AIChE J.
,
52
(
1
), pp.
125
140
.10.1002/aic.10611
34.
Pineda
,
H.
,
Biazussi
,
J.
,
López
,
F.
,
Oliveira
,
B.
,
Carvalho
,
R. D. M.
,
Bannwart
,
A. C.
, and
Ratkovich
,
N.
,
2016
, “
Phase Distribution Analysis in an Electrical Submersible Pump (ESP) Inlet Handling Water-Air Two-Phase Flow Using Computational Fluid Dynamics (CFD)
,”
J. Pet. Sci. Eng.
,
139
, pp.
49
61
.10.1016/j.petrol.2015.12.013
35.
Marsis
,
E.
,
Pirouzpanah
,
S.
, and
Morrison
,
G.
,
2013
, “
CFD-Based Design Improvement for Single-Phase and Two-Phase Flow Inside an Electrical Submersible Pump
,”
ASME
Paper No. FEDSM2013-16060.10.1115/FEDSM2013-16060
36.
Morrison
,
G.
,
Yi
,
C.
,
Steck
,
D.
,
Chen
,
Y.
,
Bai
,
C.
, and
Patil
,
A.
,
2017
, “
Effect of Gas Presence on Erosive Wear of Split-Vane Electrical Submersible Pump
,”
Proceedings of the 33rd International Pump Users Symposium
, Houston, TX, Dec. 11–14, pp.
2
18
.https://www.researchgate.net/publication/327435098_Effect_of_Gas_Presence_on_Erosive_Wear_of_Split-Vane_Electrical_Submersible_Pump
37.
Schäfer
,
T.
,
Neumann
,
M.
,
Bieberle
,
A.
, and
Hampel
,
U.
,
2017
, “
Experimental Investigations on a Common Centrifugal Pump Operating Under Gas Entrainment Conditions
,”
Nucl. Eng. Des.
,
316
, pp.
1
8
.10.1016/j.nucengdes.2017.02.035
38.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S.
,
2018
, “
Influence of Geometry of Inlet Guide Vanes on Pressure Fluctuations of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091204
.10.1115/1.4039714
39.
Verde
,
W.
,
Biazussi
,
J.
,
Sassim
,
N.
, and
Bannwart
,
A.
,
2017
, “
Experimental Study of Gas-Liquid Two-Phase Flow Patterns Within Centrifugal Pumps Impellers
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
37
51
.10.1016/j.expthermflusci.2017.02.019
You do not currently have access to this content.