Abstract

In this study, large eddy simulations (LES) of turbulent coflow jets are performed and designed to investigate the effects of the jet-to-coflow velocity ratio, Vr, on jet characteristics. A fully developed turbulent pipe flow at Re=10,000, based on the bulk velocity and pipe diameter, is employed as the jet outlet in this work. A comparison between laminar and turbulent jets is performed against the experimental results of a jet produced by a fully developed turbulent pipe flow. For the coflow jet, simulations with different jet-to-coflow velocity ratios (Vr = 3, 6, 12, and ) are performed to investigate the turbulence intensities and the decay of the centerline velocity of the jet. The results give two constant decay rates: Ku0.144 for single-phase jets and Ku0.133 for particle-laden jets. With a decrease in Vr (i.e., a higher coflow velocity), the results show a higher peak value and a larger droop rate for turbulence intensities. This study is then extended to investigate particle distribution under a two-way coupling regime, using a Lagrangian framework. The particle velocity and distribution along the jet centerline, and the particle clustering and radial probability distribution in the jet downstream domain are analyzed with the same coflow jet parameters. The particles tend to move faster and distribute preferentially in the center region with a decrease in Vr, which agrees with the increasing turbulence intensities along the jet centerline in the present work.

References

References
1.
Bogusławski
,
L.
, and
Popiel
,
C. O.
,
1979
, “
Flow Structure of the Free Round Turbulent Jet in the Initial Region
,”
J. Fluid Mech.
,
90
(
3
), pp.
531
539
.10.1017/S0022112079002378
2.
Abraham
,
J.
,
1996
, “
Entrapment Characteristics of Transient Gas Jets
,”
Numer. Heat Transfer, Part A Appl.
,
30
(
4
), pp.
347
364
.10.1080/10407789608913844
3.
Panchapakesan
,
N. R.
, and
Lumley
,
J. L.
,
1993
, “
Turbulence Measurements in Axisymmetric Jets of Air and Helium—Part 1. Air Jet
,”
J. Fluid Mech.
,
246
, pp.
197
223
.10.1017/S0022112093000096
4.
Picano
,
F.
, and
Casciola
,
C.
,
2007
, “
Small-Scale Isotropy and Universality of Axisymmetric Jets
,”
Phys. Fluids
,
19
(
11
), p.
118106
.10.1063/1.2804955
5.
Fellouah
,
H.
,
Ball
,
C.
, and
Pollard
,
A.
,
2009
, “
Reynolds Number Effects Within the Development Region of a Turbulent Round Free Jet
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3943
3954
.10.1016/j.ijheatmasstransfer.2009.03.029
6.
Antonia
,
R. A.
, and
Bilger
,
R. W.
,
1973
, “
An Experimental Investigation of an Axisymmetric Jet in a Co-Flowing Air Stream
,”
J. Fluid Mech.
,
61
(
4
), pp.
805
822
.10.1017/S0022112073000959
7.
Antoine
,
Y.
,
Lemoine
,
F.
, and
Lebouché
,
M.
,
2001
, “
Turbulent Transport of a Passive Scalar in a Round Jet Discharging Into a Co-Flowing Stream
,”
Eur. J. Mech.-B/Fluids
,
20
(
2
), pp.
275
301
.10.1016/S0997-7546(00)01120-1
8.
Schefer
,
R.
, and
Dibble
,
R.
,
2001
, “
Mixture Fraction Field in a Turbulent Nonreacting Propane Jet
,”
AIAA J.
,
39
(
1
), pp.
64
72
.10.2514/2.1271
9.
Gazzah
,
M.
,
Belmabrouk
,
H.
, and
Sassi
,
M.
,
2004
, “
A Numerical Study of the Scalar Field in Turbulent Round Jet With Co-Flowing Stream
,”
Comput. Mech.
,
34
(
5
), pp.
430
437
.10.1007/s00466-004-0587-8
10.
Gazzah
,
M. H.
,
Belmabrouk
,
H.
, and
Sassi
,
M.
,
2005
, “
Scalar Transport Modelling in Turbulent Round Jets With Co-Flowing Stream
,”
Int. J. Therm. Sci.
,
44
(
8
), pp.
766
773
.10.1016/j.ijthermalsci.2005.01.007
11.
Wang
,
P.
,
Fröhlich
,
J.
,
Michelassi
,
V.
, and
Rodi
,
W.
,
2008
, “
Large-Eddy Simulation of Variable-Density Turbulent Axisymmetric Jets
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
654
664
.10.1016/j.ijheatfluidflow.2008.02.002
12.
Wang
,
Z.
,
He
,
P.
,
Lv
,
Y.
,
Zhou
,
J.
,
Fan
,
J.
, and
Cen
,
K.
,
2010
, “
Direct Numerical Simulation of Subsonic Round Turbulent Jet
,”
Flow, Turbul. Combust.
,
84
(
4
), pp.
669
686
.10.1007/s10494-010-9248-5
13.
Gazzah
,
M. H.
,
Boughattas
,
N.
,
Belmabrouk
,
H.
, and
Said
,
R.
,
2010
, “
The Dynamic Field in Turbulent Round Jet Discharging into a Co-Flowing Stream
,”
Nat. Sci.
,
2
(
6
), pp.
635
640
.10.4236/ns.2010.26079
14.
Gazzah
,
M. H.
, and
Belmabrouk
,
H.
,
2014
, “
Directed Co-Flow Effects on Local Entropy Generation in Turbulent Heated Round Jets
,”
Comput. Fluids
,
105
, pp.
285
293
.10.1016/j.compfluid.2014.09.037
15.
Srinivasarao
,
T.
,
Murthy
,
I. D.
,
Lovaraju
,
P.
, and
Rathakrishnan
,
E.
,
2017
, “
Effect of Inner Nozzle Lip Thickness on Co-Flow Jet Characteristics
,”
Int. J. Turbo Jet-Engines
,
34
(
3
), pp.
287
293
.10.1515/tjj-2016-0004
16.
Darabkhani
,
H. G.
,
Wang
,
Q.
,
Chen
,
L.
, and
Zhang
,
Y.
,
2011
, “
Impact of Co-Flow Air on Buoyant Diffusion Flames Flicker
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2996
3003
.10.1016/j.enconman.2011.04.011
17.
Djeridane
,
T.
,
Amielh
,
M.
,
Anselmet
,
F.
, and
Fulachier
,
L.
,
1996
, “
Velocity Turbulence Properties in the Near‐Field Region of Axisymmetric Variable Density Jets
,”
Phys. Fluids
,
8
(
6
), pp.
1614
1630
.10.1063/1.868935
18.
Modarress
,
D.
,
Tan
,
H.
, and
Elghobashi
,
S.
,
1984
, “
Two-Component LDA Measurement in a Two-Phase Turbulent Jet
,”
AIAA J.
,
22
(
5
), pp.
624
630
.10.2514/3.8647
19.
Shuen
,
J.-S.
,
Solomon
,
A.
,
Zhang
,
Q.
, and
Faeth
,
G.
,
1985
, “
Structure of Particle-Laden Jets-Measurements and Predictions
,”
AIAA J.
,
23
(
3
), pp.
396
404
.10.2514/3.8926
20.
Fleckhaus
,
D.
,
Hishida
,
K.
, and
Maeda
,
M.
,
1987
, “
Effect of Laden Solid Particles on the Turbulent Flow Structure of a Round Free Jet
,”
Exp. Fluids
,
5
(
5
), pp.
323
333
.10.1007/BF00277711
21.
Mostafa
,
A.
,
Mongia
,
H.
,
McDonell
,
V.
, and
Samuelsen
,
G.
,
1989
, “
Evolution of Particle-Laden Jet Flows—A Theoretical and Experimental Study
,”
AIAA J.
,
27
(
2
), pp.
167
183
.10.2514/3.10079
22.
Hardalupas
,
Y.
,
Taylor
,
A.
, and
Whitelaw
,
J. H.
,
1989
, “
Velocity and Particle-Flux Characteristics of Turbulent Particle-Laden Jets
,”
Proc. R. Soc. London, Ser. A.
,
426
(
1870
), pp.
31
78
.10.1098/rspa.1989.0117
23.
Eaton
,
J. K.
, and
Fessler
,
J.
,
1994
, “
Preferential Concentration of Particles by Turbulence
,”
Int. J. Multiphase Flow
,
20
, pp.
169
209
.10.1016/0301-9322(94)90072-8
24.
Luo
,
K.
,
Gui
,
N.
,
Fan
,
J.
, and
Cen
,
K.
,
2013
, “
Direct Numerical Simulation of a Two-Phase Three-Dimensional Planar Jet
,”
Int. J. Heat Mass Transfer
,
64
, pp.
155
161
.10.1016/j.ijheatmasstransfer.2013.04.023
25.
Lau
,
T. C.
, and
Nathan
,
G. J.
,
2014
, “
Influence of Stokes Number on the Velocity and Concentration Distributions in Particle-Laden Jets
,”
J. Fluid Mech.
,
757
, pp.
432
457
.10.1017/jfm.2014.496
26.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.10.1007/BF00936835
27.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
28.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
3
), pp.
633
635
.10.1063/1.858280
29.
Chin
,
C.
,
Monty
,
J.
, and
Ooi
,
A.
,
2014
, “
Reynolds Number Effects in DNS of Pipe Flow and Comparison With Channels and Boundary Layers
,”
Int. J. Heat Fluid Flow
,
45
, pp.
33
40
.10.1016/j.ijheatfluidflow.2013.11.007
30.
Pope
,
S. B.
,
2004
, “
Ten Questions concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6(1)
, pp.
35
35
.10.1088/1367-2630/6/1/035
31.
Eskin
,
D.
,
2005
, “
Modeling Dilute Gas–Particle Flows in Horizontal Channels With Different Wall Roughness
,”
Chem. Eng. Sci.
,
60
(
3
), pp.
655
663
.10.1016/j.ces.2004.09.001
32.
Parthasarathy
,
R.
, and
Faeth
,
G. M.
,
1987
, “
Structure of Particle-Laden Turbulent Water Jets in Still Water
,”
Int. J. Multiphase Flow
,
13
(
5
), pp.
699
716
.10.1016/0301-9322(87)90046-2
33.
Gui
,
N.
,
Fan
,
J. R.
, and
Chen
,
S.
,
2010
, “
Numerical Study of Particle–Particle Collision in Swirling Jets: A DEM–DNS Coupling Simulation
,”
Chem. Eng. Sci.
,
65
(
10
), pp.
3268
3278
.10.1016/j.ces.2010.02.026
34.
Breuer
,
M.
, and
Alletto
,
M.
,
2012
, “
Efficient Simulation of Particle-Laden Turbulent Flows With High Mass Loadings Using Les
,”
Int. J. Heat Fluid Flow
,
35
, pp.
2
12
.10.1016/j.ijheatfluidflow.2012.01.001
35.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
A Generalized Method for Predicting the Minimum Fluidization Velocity
,”
AIChE J.
,
12
(
3
), pp.
610
612
.10.1002/aic.690120343
36.
Mei
,
R.
,
1992
, “
An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number
,”
Int. J. Multiphase Flow
,
18
(
1
), pp.
145
147
.10.1016/0301-9322(92)90012-6
37.
Saffman
,
P.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.10.1017/S0022112065000824
38.
Picano
,
F.
,
Sardina
,
G.
,
Gualtieri
,
P.
, and
Casciola
,
C.
,
2010
, “
Anomalous Memory Effects on Transport of Inertial Particles in Turbulent Jets
,”
Phys. Fluids
,
22
(
5
), p.
051705
.10.1063/1.3432439
39.
Monchaux
,
R.
,
Bourgoin
,
M.
, and
Cartellier
,
A.
,
2010
, “
Preferential Concentration of Heavy Particles: A Voronoï Analysis
,”
Phys. Fluids
,
22
(
10
), p.
103304
.10.1063/1.3489987
40.
Picano
,
F.
,
Sardina
,
G.
, and
Casciola
,
C.
,
2009
, “
Spatial Development of Particle-Laden Turbulent Pipe Flow
,”
Phys. Fluids
,
21
(
9
), p.
093305
.10.1063/1.3241992
41.
Lau
,
T. C.
,
Frank
,
J. H.
, and
Nathan
,
G. J.
,
2019
, “
Resolving the Three-Dimensional Structure of Particles That Are Aerodynamically Clustered by a Turbulent Flow
,”
Phys. Fluids
,
31
(
7
), p.
071702
.10.1063/1.5110323
42.
Ferenc
,
J.-S.
, and
Néda
,
Z.
,
2007
, “
On the Size Distribution of Poisson Voronoi Cells
,”
Phys. A: Stat. Mech. Appl.
,
385
(
2
), pp.
518
526
.10.1016/j.physa.2007.07.063
You do not currently have access to this content.