Abstract

An experimental campaign dedicated to the characterization of the wall-normal velocity correlations in a zero pressure gradient turbulent boundary layer was performed. A double set of laser Doppler velocimetry (LDV) benches were used to access two-point two-time correlations of the wall-normal velocity. The measurements analysis confirms several important hypotheses classically made to model wall pressure spectra from the velocity correlations. In particular, the ratio of the wall-normal Reynolds stress to the turbulent shear stress is confirmed to exhibit a large plateau in the logarithmic region. In addition, Taylor's hypothesis of frozen turbulence is well recovered for the wall-normal velocity fluctuations. The convection velocity for the wall-normal velocity fluctuations is also shown to evolve across the boundary layer, according to the mean velocity profile. Furthermore, the decorrelation time scale of velocity correlations appears to be increasing throughout the boundary layer thickness in accordance with the increase of the convection velocity. The results obtained with this original campaign will help improving models for wall pressure spectra, especially those based on the resolution of the Poisson equation for the pressure for which the wall pressure correlations are related to the wall-normal velocity correlations.

References

References
1.
Kraichnan
,
R. H.
,
1956
, “
Pressure Fluctuations in Turbulent Flow Over a Flat Plate
,”
J. Acoust. Soc. Am.
,
28
(
3
), pp.
378
390
.10.1121/1.1908336
2.
Panton
,
R. L.
, and
Linebarger
,
J. H.
,
1974
, “
Wall Pressure Spectra Calculations for Equilibrium Boundary Layers
,”
J. Fluid Mech.
,
65
(
2
), pp.
261
287
.10.1017/S0022112074001388
3.
Slama
,
M.
,
Leblond
,
C.
, and
Sagaut
,
P.
,
2018
, “
A Kriging-Based Elliptic Extended Anisotropic Model for the Turbulent Boundary Layer Wall Pressure Spectrum
,”
J. Fluid Mech.
,
840
, pp.
25
55
.10.1017/jfm.2017.810
4.
Peltier
,
L. J.
, and
Hambric
,
S. A.
,
2007
, “
Estimating Turbulent-Boundary-Layer Wall-Pressure Spectra From Cfd Rans Solutions
,”
J. Fluids Struct.
,
23
(
6
), pp.
920
937
.10.1016/j.jfluidstructs.2007.01.003
5.
Morilhat
,
S.
,
Chedevergne
,
F.
, and
Simon
,
F.
,
2019
, “
A Unified Methodology to Evaluate the Radiated Noise Due to Turbulent Boundary Layer Flows
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061201
.10.1115/1.4041611
6.
Morilhat
,
S.
,
2018
, “
Modélisation Des Fluctuations de la Pression Pariétale D'une Couche Limite Turbulente Pour Des Applications en Vibro-Acoustique
,” Ph.D. thesis,
Université de Toulouse
, Toulouse, France.
7.
Lysak
,
P. D.
,
2006
, “
Modeling the Wall Pressure Spectrum in Turbulent Pipe Flows
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
216
222
.10.1115/1.2170125
8.
Aupoix
,
B.
,
2015
, “
Extension of Lysaks Approach to Evaluate the Wall Pressure Spectrum for Boundary Layer Flows
,”
Flow, Turbul. Combust.
,
94
(
1
), pp.
63
78
.10.1007/s10494-014-9538-4
9.
Sillero
,
J.
,
Jimenez
,
J.
, and
Moser
,
R.
,
2014
, “
Two-Point Statistics for Turbulent Boundary Layers and Channels at Reynolds Numbers Up to δ+ = 2000
,”
Phys. Fluids
,
26
(
10
), p.
105109
.10.1063/1.4899259
10.
Blake
,
W. K.
,
1970
, “
Turbulent Boundary-Layer Wall-Pressure Fluctuations on Smooth and Rough Walls
,”
J. Fluid Mech.
,
44
(
04
), pp.
637
660
.10.1017/S0022112070002069
11.
McGrath
,
B. E.
, and
Simpson
,
R. L.
,
1987
, “
Some Features of Surface Pressure Fluctuations in Turbulent Boundary Layers With Zero and Favorable Pressure Gradients
,” National Aeronautics and Space Administration,
Washington, DC
, NASA Contractor Report No. 4051.
12.
Goody
,
M. C.
, and
Simpson
,
R. L.
,
2000
, “
Surface Pressure Fluctuations Beneath Two-and Three-Dimensional Turbulent Boundary Layers
,”
AIAA J.
,
38
(
10
), pp.
1822
1831
.10.2514/2.863
13.
Arguillat
,
B.
,
2006
, “
Etude Expérimentale et Numérique de Champs de Pression Pariétale Dans Lespace Des Nombres Donde, Avec Application Aux Vitrages Automobiles
,” Ph.D. thesis,
Ecole centrale de Lyon, Toulouse, France
.
14.
Favre
,
A.
,
Gaviglio
,
J.
, and
Dumas
,
R.
,
1957
, “
Space-Time Double Correlations and Spectra in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
2
(
4
), pp.
313
342
.10.1017/S0022112057000166
15.
Tritton
,
D.
,
1967
, “
Some New Correlation Measurements in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
28
(
03
), pp.
439
462
.10.1017/S0022112067002216
16.
Grant
,
H.
,
1958
, “
The Large Eddies of Turbulent Motion
,”
J. Fluid Mech.
,
4
(
02
), pp.
149
190
.10.1017/S0022112058000379
17.
Belmabrouk
,
H.
, and
Michard
,
M.
,
1998
, “
Taylor Length Scale Measurement by Laser Doppler Velocimetry
,”
Exp. Fluids
,
25
(
1
), pp.
69
76
.10.1007/s003480050209
18.
Neumann
,
M.
,
Heitkam
,
S.
,
Shirai
,
K.
,
Büttner
,
L.
, and
Czarske
,
J.
,
2010
, “
Highly Precise Correlation Estimates of Turbulent Shear Flows Using a Laser Doppler Profile Sensor and Array Detection
,”
15th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July
5
8
. https://www.researchgate.net/publication/229006244_Highly_precise_correlation_estimates_of_turbulent_shear_flows_using_a_LASER_Doppler_profile_sensor_and_array_detection
19.
Fraser
,
R.
,
Pack
,
C.
, and
Santavicca
,
D.
,
1986
, “
An LDV System for Turbulence Length Scale Measurements
,”
Exp. Fluids
,
4
(
3
), pp.
150
152
.10.1007/BF00280265
20.
Bech
,
K. H.
,
Tillmark
,
N.
,
Alfredsson
,
P. H.
, and
Andersson
,
H. I.
,
1995
, “
An Investigation of Turbulent Plane Couette Flow at Low Reynolds Numbers
,”
J. Fluid Mech.
,
286
, pp.
291
325
.10.1017/S0022112095000747
21.
Furuichi
,
N.
,
Hachiga
,
T.
, and
Kumada
,
M.
,
2004
, “
An Experimental Investigation of a Large-Scale Structure of a Two-Dimensional Backward-Facing Step by Using Advanced Multi-Point LDV
,”
Exp. Fluids
,
36
(
2
), pp.
274
281
.10.1007/s00348-003-0718-6
22.
Benedict
,
L.
, and
Gould
,
R.
,
1999
, “
Understanding Biases in the Near-Field Region of Lda Two-Point Correlation Measurements
,”
Exp. Fluids
,
26
(
5
), pp.
381
388
.10.1007/s003480050301
23.
Trimis
,
D.
, and
Melling
,
A.
,
1995
, “
Improved Laser Doppler Anemometry Techniques for Two-Point Turbulent Flow Correlations
,”
Meas. Sci. Technol.
,
6
(
6
), pp.
663
673
.10.1088/0957-0233/6/6/005
24.
Ölçmen
,
M. S.
,
Simpson
,
R. L.
, and
Goody
,
M.
,
2001
, “
An Experimental Investigation of Two-Point Correlations in Two-and Three-Dimensional Turbulent Boundary Layers
,”
Flow, Turbul. Combust.
,
66
(
2
), pp.
85
112
.10.1023/A:1017576627047
25.
Violato
,
D.
, and
Scarano
,
F.
,
2011
, “
Three-Dimensional Evolution of Flow Structures in Transitional Circular and Chevron Jets
,”
Phys. Fluids
,
23
(
12
), p.
124104
.10.1063/1.3665141
26.
Meinhart
,
C.
, and
Adrian
,
R.
,
1995
, “
Measurement of the Zero-Pressure Gradient Turbulent Boundary Layer Using Particle Image Velocimetry
,”
33rd Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12, p.
789
.10.2514/6.1995-789
27.
Kähler
,
C.
,
2004
, “
Investigation of the Spatio-Temporal Flow Structure in the Buffer Region of a Turbulent Boundary Layer by Means of Multiplane Stereo PIV
,”
Exp. Fluids
,
36
(
1
), pp.
114
130
.10.1007/s00348-003-0680-3
28.
Ganapathisubramani
,
B.
,
Hutchins
,
N.
,
Hambleton
,
W.
,
Longmire
,
E.
, and
Marusic
,
I.
,
2005
, “
Investigation of Large-Scale Coherence in a Turbulent Boundary Layer Using Two-Point Correlations
,”
J. Fluid Mech.
,
524
, pp.
57
80
.10.1017/S0022112004002277
29.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
,
2000
, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
422
, pp.
1
54
.10.1017/S0022112000001580
30.
Clauser
,
F.
,
1956
, “
The Turbulent Boundary Layer
,”
Advances in Applied Mechanics
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1
51
.
31.
Wei
,
T.
,
Schmidt
,
R.
, and
McMurtry
,
P.
,
2005
, “
Comment on the Clauser Chart Method for Determining the Friction Velocity
,”
Exp. Fluids
,
38
(
5
), pp.
695
699
.10.1007/s00348-005-0934-3
32.
Aupoix
,
B.
,
2015
, “
Clicet—Version 2015 descriptif et mode d'emploi
,” ONERA Technical Report No. 1/24088 DMAE, ONERA.
33.
Favre
,
A.
,
Gaviglio
,
J.
, and
Dumas
,
R.
,
1958
, “
Further Space-Time Correlations of Velocity in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
3
(
4
), pp.
344
356
.10.1017/S0022112058000021
34.
Tam
,
W.
,
Christopher
,
K.
, and
Auriault
,
L.
,
1999
, “
Jet Mixing Noise From Fine-Scale Turbulence
,”
AIAA J.
,
37
(
2
), pp.
145
153
.10.2514/2.691
35.
Ewert
,
R.
,
2008
, “
Broadband Slat Noise Prediction Based on CAA and Stochastic Sound Sources From a Fast Random Particle-Mesh (Rpm) Method
,”
Comput. Fluids
,
37
(
4
), pp.
369
387
.10.1016/j.compfluid.2007.02.003
36.
Ewert
,
R.
,
Dierke
,
J.
,
Siebert
,
J.
,
Neifeld
,
A.
,
Appel
,
C.
,
Siefert
,
M.
, and
Kornow
,
O.
,
2011
, “
CAA Broadband Noise Prediction for Aeroacoustic Design
,”
J. Sound Vib.
,
330
(
17
), pp.
4139
4160
.10.1016/j.jsv.2011.04.014
37.
Renard
,
N.
, and
Deck
,
S.
,
2015
, “
On the Scale-Dependent Turbulent Convection Velocity in a Spatially Developing Flat Plate Turbulent Boundary Layer at Reynolds Number
,”
J. Fluid Mech.
,
775
, pp.
105
148
.10.1017/jfm.2015.290
You do not currently have access to this content.