Abstract

While a variety of active and passive techniques have been proposed for steady flows, pulsatile flow has received much less attention. Pulsation makes more control parameters available for passive methods and enables them to separate particles. The purpose of this work is to determine the effects of the phase shift between two entering flows (only one includes the particles) on particle separation inside a double Y-microchannel. Numerical simulations were carried out for both steady and pulsating flow conditions. The results showed that when the velocity amplitude ratio (β) is less than 2, the separation index increases with the phase shift (φ) and the highest efficiency occurs at φ = 180 deg. A similar trend can be observed for higher values of β only if the pulsation period is short enough. A series of experiments qualitatively validated the numerical results.

References

1.
Kralj
,
J. G.
,
Lis
,
M. T. W.
,
Schmidt
,
M. A.
, and
Jensen
,
F. K.
,
2006
, “
Continuous Dielectrophoretic Size-Based Particle Sorting
,”
Anal. Chem.
,
78
(
14
), pp.
5019
5025
.10.1021/ac0601314
2.
Cheng
,
F. I.
,
Chang
,
C. H.
,
Hou
,
D.
, and
Chang
,
C. H.
,
2007
, “
An Integrated Dielectrophoretic Chip for Continuous Bioparticle Filtering, Focusing, Sorting, Trapping, and Detecting
,”
Biomicrofluidic
,
1
(
2
), p.
021503
.10.1063/1.2723669
3.
Braschler
,
T.
,
Demierre
,
N.
,
Nascimento
,
E.
,
Silva
,
T.
,
Oliva
,
A. G.
, and
Renaud
,
P.
,
2008
, “
Continuous Separation of Cells by Balanced Dielectrophoretic Forces at Multiple Frequencies
,”
Lab Chip
,
8
(
2
), pp.
280
286
.10.1039/B710303D
4.
Forbes
,
P. T.
, and
Forry
,
P. S.
,
2012
, “
Microfluidic Magnetophoretic Separations of Immunomagnetically Labeled Rare Mammalian Cells
,”
Lab Chip
,
12
(
8
), pp.
1471
1479
.10.1039/c2lc40113d
5.
Miltenyi
,
S.
,
Müller
,
W.
,
Weichel
,
W.
, and
Radbruch
,
A.
,
1990
, “
High Gradient Magnetic Cell Separation With MACS
,”
Cytometry
,
11
(
2
), pp.
231
238
.10.1002/cyto.990110203
6.
Li
,
P.
,
Mao
,
Z.
,
Peng
,
Z.
,
Zhou
,
L.
,
Chen
,
Y.
,
Huang
,
H. P.
,
Truica
,
I. C.
,
Drabick
,
J. J.
,
Deiry
,
S. W.
,
Dao
,
M.
,
Suresh
,
S.
, and
Huang
,
J. T.
,
2015
, “
Acoustic Separation of Circulating Tumor Cells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
16
), pp.
4970
4975
.10.1073/pnas.1504484112
7.
Jakobsson
,
O.
,
Grenvall
,
C.
,
Nordin
,
M.
,
Evander
,
M.
, and
Laurell
,
T.
,
2014
, “
Acoustic Actuated Fluorescence Activated Sorting of Microparticles
,”
Lab Chip
,
14
(
11
), pp.
1943
1950
.10.1039/C3LC51408K
8.
Grier
,
D. G.
,
2003
, “
A Revolution in Optical Manipulation
,”
Nature
,
424
(
6950
), pp.
810
816
.10.1038/nature01935
9.
Yamada
,
M.
,
Nakashima
,
M.
, and
Seki
,
M.
,
2004
, “
Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel
,”
Anal. Chem.
,
76
(
18
), pp.
5465
5471
.10.1021/ac049863r
10.
Huang
,
R. L.
,
Cox
,
C. E.
,
Austin
,
H. R.
, and
Sturm
,
J. C.
,
2004
, “
Continuous Particle Separation Through Deterministic Lateral Displacement
,”
Science
,
304
(
5673
), pp.
987
990
.10.1126/science.1094567
11.
Carlo
,
D. D.
,
2009
, “
Inertial Microfluidics
,”
Lab Chip
,
9
, pp.
3038
3046
.10.1039/b912547g
12.
Pohl
,
H. A.
,
1951
, “
The Motion and Precipitation of Suspensoids in Divergent Electric Fields
,”
J. Appl. Phys.
,
22
(
7
), pp.
869
871
.10.1063/1.1700065
13.
Cetin
,
B.
, and
Li
,
D.
,
2011
, “
Dielectrophoresis in Microfluidics Technology
,”
Electrophoresis
,
32
(
18
), pp.
2410
2427
.10.1002/elps.201100167
14.
Lee
,
D.
,
Nam
,
S. M.
,
Kim
,
J.
,
Carlo
,
D. D.
, and
Lee
,
W.
,
2018
, “
Active Control of Inertial Focusing Positions and Particle Separations Enabled by Velocity Profile Tuning With Co-Flow Systems
,”
Anal. Chem.
,
90
(
4
), pp.
2902
2911
.10.1021/acs.analchem.7b05143
15.
Hur
,
S. C.
,
Tse
,
H. T. K.
, and
Carlo
,
D. D.
,
2010
, “
Sheathless Inertial Cell Ordering for Extreme Throughput Flow Cytometry
,”
Lab Chip
,
10
(
3
), pp.
274
280
.10.1039/B919495A
16.
Thomas
,
A. M.
, and
Narayanan
,
R.
,
2002
, “
The Use of Pulsatile Flow to Separate Species
,”
Ann. N. Y. Acad. Sci.
,
974
(
1
), pp.
42
56
.10.1111/j.1749-6632.2002.tb05895.x
17.
Lee
,
C. J.
,
Sheen
,
H. J.
,
Chu
,
H. C.
,
Hsu
,
C. J.
, and
Wu
,
T. H.
,
2007
, “
The Development of a Triple-Channel Separator for Particle Removal With Self-Pumping Oscillating Flow
,”
J. Micromech. Microeng.
,
17
(
3
), pp.
439
446
.10.1088/0960-1317/17/3/004
18.
Hacioglu
,
A.
, and
Narayanan
,
R.
,
2016
, “
Oscillating Flow and Separation of Species in Rectangular Channels
,”
Phys. Fluids
,
28
(
7
), p.
073602
.10.1063/1.4954316
19.
Glasgow
,
I.
,
Lieber
,
S.
, and
Aubry
,
N.
,
2004
, “
Parameters Influencing Pulsed Flow Mixing in Microchannels
,”
Anal. Chem.
,
76
(
16
), pp.
4825
4832
.10.1021/ac049813m
20.
Goullet
,
A.
,
Glasgow
,
I.
, and
Aubry
,
N.
,
2005
, “
Dynamics of Microfluidic Mixing Using Time Pulsing
,”
Discrete Cont. Dyn.
, 2005(Special), pp.
327
336
.https://www.aimsciences.org/article/doi/10.3934/proc.2005.2005.327
21.
Su
,
G.
, and
Pidaprti
,
M. R.
,
2011
, “
Separation of Particles for Drug Delivery Using a Microfluidic Device With Actuation
,”
ASME J. Nanotechnol. Eng. Med.
,
2
(
2
), p.
021006
.10.1115/1.4003930
22.
Dolomite
, 2020, “Product Data Sheet,” Dolomite Ltd.,
Royston, UK
, https://www.johnmorrisgroup.com/Content/Attachments/23497/3200008_y_junction_chip_product_datasheet.pdf
23.
FLUENT, Inc.,
2006
, “Fluent 6.3, User's Guide,” FLUENT, Fluent Inc.,
Lebanon, NH
.
24.
Su
,
G.
, and
Pidaparti
,
M. R.
,
2010
, “
Transport of Drug Particles in Micropumps Through Novel Actuation
,”
Microsyst. Technol.
,
16
(
4
), pp.
595
606
.10.1007/s00542-009-0995-y
25.
Su
,
G.
, and
Pidaparti
,
M. R.
,
2010
, “
Drug Particle Delivery Investigation Through a Valveless Micropump
,”
J. Microelectromech. Syst.
,
19
(
6
), pp.
1390
1399
.10.1109/JMEMS.2010.2082502
26.
Syed
,
M. S.
,
Rafeie
,
M.
,
Henderson
,
R.
,
Vandamme
,
D.
,
Asadnia
,
M.
, and
Ebrahimi
,
W. M.
,
2017
, “
A 3D-Printed Mini-Hydrocyclone for High Throughput Particle Separation: Application to Primary Harvesting of Microalgae
,”
Lab Chip
,
17
(
14
), pp.
2459
2469
.10.1039/C7LC00294G
27.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.10.1017/S0022112072001806
28.
Lawrence
,
C. J.
, and
Weinbaum
,
S.
,
1988
, “
The Unsteady Force on a Body at Low Reynolds Number; The Axisymmetric Motion of a Spheroid
,”
J. Fluid Mech.
,
189
, pp.
463
489
.10.1017/S0022112088001107
29.
Michaelides
,
E. E.
,
1997
, “
Review—The Transient Equation of Motion for Particles, Bubbles and Droplets
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
233
247
.10.1115/1.2819127
30.
Zhang
,
J.
,
Yan
,
S.
,
Yuan
,
D.
,
Alici
,
G.
,
Nguyen
,
N. T.
,
Ebrahimi
,
W. M.
, and
Li
,
W.
,
2016
, “
Fundamentals and Applications of Inertial Microfluidics: A Review
,”
Lab Chip
,
16
(
1
), pp.
10
34
.10.1039/C5LC01159K
31.
Mueller
,
S.
,
Llewellin
,
E. W.
, and
Mader
,
H. M.
,
2010
, “
The Rheology of Suspensions of Solid Particles
,”
Proc. R. Soc. A
,
466
(
2116
), pp.
1201
1228
.10.1098/rspa.2009.0445
32.
ANSYS, 2019, “Equations of Motion for Particles in Fluent,” accessed Nov. 28,
2019
, http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node241.htm
33.
Harris
,
H. E.
,
1989
,
The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use
,
Academic Press
,
San Diego, CA
.
34.
Fadlallah
,
H.
,
Jarrahi
,
M.
,
Herbert
,
É.
,
Ferrari
,
R.
,
Méjean
,
A.
, and
Peerhossaini
,
H.
,
2020
, “
Active Fluids: Effects of Hydrodynamic Stress on Growth of Self-Propelled Fluid Particles
,”
J. Appl. Fluid Mech.
,
13
(
2
), pp.
561
570
.10.29252/jafm.13.02.30134
35.
Vourc'h
,
T.
,
Peerhossaini
,
H.
,
Léopoldès
,
J.
,
Méjean
,
A.
,
Chauvat
,
F.
, and
Cassier-Chauvat
,
C.
,
2018
, “
Slowdown of the Surface Diffusion During Early Stages of Bacterial Colonization
,”
Phys. Rev. E
,
97
(
3
), p.
032407
.10.1103/PhysRevE.97.032407
You do not currently have access to this content.