Abstract

Frequency-dependent friction can be an important dissipative factor for unsteady flows. In this research investigation, various popular models have been reviewed thoroughly and then applied to evaluate frequency-dependent friction in high-pressure transient flows. Three piezoresistive transducers were used to measure pressure signals along a 2 m high-pressure pipe: the first and the third signal were assumed as boundary conditions in a homemade code that is able to solve the velocity and pressure fields along the pipe. The simulation pressure data have been compared with the pressure signal measured by means of the transducer installed in the middle of the pipe. In addition, an injector model has been applied to a 2 m pipe in order to perform additional simulations in which the rail pressure time distribution and the electrical current time history to the injector are provided as boundary conditions. It has been observed that when frequency-dependent friction is taken into account, more accurate pressure results are generally obtained along the injector supply line than in the case in which the viscous stress is calculated by only taking into account the steady-state Darcy–Weisbach contribution. On the other hand, on the basis of a comparison between the obtained numerical results and experimental traces, the improvement is not related to the method by which the unsteady friction is evaluated. Therefore, the simplest frequency-dependent friction model is recommended to simulate high-pressure transient flows in pipes with a shorter aspect ratio than 800 and lower Reynolds numbers than 104.

References

1.
Johnston
,
N.
,
Pan
,
M.
,
Kudzma
,
S.
, and
Wang
,
P.
,
2014
, “
Use of Pipeline Wave Propagation Model for Measuring Unsteady Flow Rate
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031203
.10.1115/1.4026106
2.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2007
, “
Approximation of Turbulent Wall Shear Stresses in Highly Transient Pipe Flows
,”
J. Hydraulic Eng.
,
133
(
11
), pp.
1219
1228
.10.1061/(ASCE)0733-9429(2007)133:11(1219)
3.
Storli
,
P.
, and
Nielsen
,
T. K.
,
2011
, “
Transient Friction in Pressurized Pipes. Investigation of Zielke's Model
,”
J. Hydraulic Eng.
,
137
(
5
), pp.
577
584
.10.1061/(ASCE)HY.1943-7900.0000257
4.
Ghodhbani
,
A.
, and
Haj Taïeb
,
E.
,
2017
, “
A Four-Equation Friction Model for Water Hammer Calculation in Quasi-Rigid Pipelines
,”
Int. J. Pressure Vessels Piping
,
151
, pp.
54
62
.10.1016/j.ijpvp.2017.03.001
5.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2008
, “
A Computational Study of Wall Friction and Turbulence Dynamics in Accelerating Pipe Flows
,”
Comput. Fluids
,
37
(
6
), pp.
674
689
.10.1016/j.compfluid.2007.09.001
6.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2006
, “
Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1351
1363
.10.1115/1.2354521
7.
Ramos
,
H.
,
Covas
,
D.
,
Borga
,
A.
, and
Loureiro
,
D.
,
2004
, “
Surge Damping Analysis in Pipe Systems: Modelling and Experiments
,”
J. Hydraulic Res.
,
42
(
4
), pp.
413
425
.10.1080/00221686.2004.9728407
8.
Conejero
,
J. A.
,
Lizama
,
C.
, and
Rodenas
,
F.
,
2016
, “
Dynamics of the Solutions of the Water Hammer Equations
,”
Topol. Appl.
,
203
, pp.
67
83
.10.1016/j.topol.2015.12.076
9.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.10.1016/j.jfluidstructs.2005.08.008
10.
Covas
,
D.
,
Stoianov
,
I.
,
Ramos
,
H.
,
Graham
,
N.
,
Maksimovic
, C., and
Butler
,
D.
,
2004
, “
Water Hammer in Pressurized Polyethylene Pipes: Conceptual Model and Experimental Analysis
,”
Urban Water J.
,
1
(
2
), pp.
177
197
.10.1080/15730620412331289977
11.
Shu
,
J. J.
,
2003
, “
Modelling Vaporous Cavitation on Fluid Transients
,”
Int. J. Pressure Vessels Piping
,
80
(
3
), pp.
187
195
.10.1016/S0308-0161(03)00025-5
12.
Ferrari
,
A.
,
2010
, “
Modelling Approaches to Acoustic Cavitation in Transmission Pipelines
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4193
4203
.10.1016/j.ijheatmasstransfer.2010.05.042
13.
Fukuda
,
T.
,
Ozawa
,
S.
,
Iida
,
M.
,
Takasaki
,
T.
, and
Wakabayashi
,
Y.
,
2006
, “
Distortion of Compression Wave Propagating Through Very Long Tunnel With Slab Tracks
,”
JSME Int. J. Series B: Fluids Therm. Eng.
,
49
(
4
), pp.
1156
1164
.10.1299/jsmeb.49.1156
14.
Wang
,
X.-J.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
,
Liggett
,
J. A.
, and
Vtkovský
,
J. P.
,
2002
, “
Leak Detecion in Pipelines Using the Damping of Fluid Transients
,”
J. Hydraulic Eng.
,
128
(
7
), pp.
697
711
.10.1061/(ASCE)0733-9429(2002)128:7(697)
15.
Ferrante
,
M.
, and
Brunone
,
B.
,
2003
, “
Pipe System Diagnosis and Leak Detection by Unsteady-State Tests. 1. Harmonic Analysis
,”
Adv. Water Resour.
,
26
(
1
), pp.
95
105
.10.1016/S0309-1708(02)00101-X
16.
Wang
,
X.
,
Lambert
,
M. F.
, and
Simpson
,
A. R.
,
2005
, “
Detection and Location of a Partial Blockage in a Pipeline Using Damping of Fluid Transients
,”
J. Water Resour. Plann. Manage.
,
131
(
3
), pp.
244
249
.10.1061/(ASCE)0733-9496(2005)131:3(244)
17.
Ferrari
,
A.
, and
Pizzo
,
P.
,
2016
, “
Optimization of an Algorithm for the Measurement of Unsteady Flow-Rates in High-Pressure Pipelines and Application of a Newly Designed Flowmeter to Volumetric Pump Analysis
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031604
.10.1115/1.4031541
18.
Ferrari
,
A.
,
Pizzo
,
P.
, and
Rundo
,
M.
,
2018
, “
Modelling and Experimental Studies on a Proportional Valve Using an Innovative Dynamic Flow-Rate Measurement in Fluid Power Systems
,”
J. Mech. Eng. Sci.
,
232
(
13
), pp.
2404
2418
.10.1177/0954406217721259
19.
Yang
,
F.
,
Li
,
G.
,
Hua
,
J.
,
Li
,
X.
, and
Kagawa
,
T.
,
2017
, “
A New Method for Analysing the Pressure Response Delay in a Pneumatic Brake System Caused by the Influence of Transmission Pipes
,”
Appl. Sci.
,
7
(
9
), p.
941
.10.3390/app7090941
20.
Catania
,
A. E.
,
Ferrari
,
A.
,
Manno
,
M.
, and
Spessa
,
E.
,
2008
, “
Experimental Investigation of Dynamics Effects on Multiple-Injection Common Rail System Performance
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032806
.10.1115/1.2835353
21.
Ferrari
,
A.
, and
Pizzo
,
P.
,
2017
, “
Fully Predictive Common Rail Fuel Injection Apparatus Model and Its Application to Global System Dynamics Analysis
,”
Int. J. Engine Res.
,
18
(
3
), pp.
273
290
.10.1177/1468087416653246
22.
Catania
,
A. E.
,
Ferrari
,
A.
, and
Spessa
,
E.
,
2009
, “
Numerical-Experimental Study and Solutions to Reduce the Dwell Time Threshold for Fusion-Free Consecutive Injections in a Multijet Solenoid-Type C.R. System
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022804
.10.1115/1.2938394
23.
Catania
,
A. E.
, and
Ferrari
,
A.
,
2011
, “
Experimental Analysis, Modelling and Control of a Volumetric Radial-Piston Pump
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081103
.10.1115/1.4004443
24.
Catania
,
A. E.
,
Ferrari
,
A.
, and
Spessa
,
E.
,
2008
, “
Temperature Variations in the Simulation of High-Pressure Injection-System Transient Flows Under Cavitation
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
2090
2107
.10.1016/j.ijheatmasstransfer.2007.11.032
25.
Ferrari
,
A.
, and
Paolicelli
,
F.
,
2017
, “
An Indirect Method for the Real-Time Evaluation of the Fuel Mass Injected in Small Injections in Common Rail Diesel Engines
,”
Fuel
,
191
, pp.
322
329
.10.1016/j.fuel.2016.11.053
26.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
27.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
, “
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 9th Printing
,” United States Department of Commerce, National Bureau of Standards (NBS), Dover Publications, Mineola, NY.
28.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
,
97
(
1
), pp.
97
105
.10.1115/1.3447224
29.
Kagawa
,
T.
,
Lee
,
I.
,
Kitagawa
,
A.
, and
Takenaka
,
T.
,
1983
, “
High Speed and Accurate Computing Method of Frequency-Dependent Friction in Laminar Pipe Flow for Characteristics Method
,”
Trans. Jpn. Soc. Mech. Eng. Ser. B
,
49
(
447
), pp.
2638
2644
.10.1299/kikaib.49.2638
30.
Schohl
,
G. A.
,
1993
, “
Improved Approximate Method for Simulating Frequency-Dependent Friction in Transient Laminar Flow
,”
ASME J. Fluids Eng.
,
115
(
3
), pp.
420
424
.10.1115/1.2910155
31.
Shu
,
J. J.
,
Edge
,
K. A.
,
Burrows
,
C. R.
, and
Xiao
,
S.
,
1993
, “
Transmission Line Modelling With Vaporous Cavitation
,”
ASME
Paper No. 93-WA/FPST-2.10.1115/93-WA/FPST-2
32.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2003
, “
Transient Turbulent Friction in Smooth Pipe Flows
,”
J. Sound Vib.
,
259
(
5
), pp.
1011
1036
.10.1006/jsvi.2002.5160
33.
Catania
,
A. E.
,
Ferrari
,
A.
, and
Manno
,
M.
,
2009
, “
Development and Application of a Complete Multijet Common-Rail Injection-System Mathematical Model for Hydrodynamic Analysis and Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
130
(
6
), p.
062809
.10.1115/1.2925679
34.
Ferrari
,
A.
,
Paolicelli
,
F.
, and
Pizzo
,
P.
,
2015
, “
The New-Generation of Solenoid Injectors Equipped With Pressure-Balanced Pilot Valves for Energy Saving and Dynamic Response Improvement
,”
Appl. Energy
,
151
, pp.
367
376
.10.1016/j.apenergy.2015.03.074
You do not currently have access to this content.