Abstract

The paper presents the results of an investigation of a possibility for energy harvesting from a flexible material such as an ionic polymer–metal composite (IPMC) placed in a steady flow of air characteristic of conditions typical to a densely urbanized area. As electro-active devices require dynamic loading to produce current, their response is usually evaluated in unsteady and turbulent flows, where an electro-active polymer follows the movement of the medium surrounding the device. In our study, we examine the flow conditions at which flutter sets the IPMC strip in motion. Although flutter is often perceived as an unfavorable phenomenon for aerodynamic applications and civil structures, it may be beneficial for harvesting wind energy. Of particular interest is that this phenomenon may occur in a steady flow, which potentially expands the range of favorable flow conditions for energy harvesting. In the paper, the air speed at which flutter occurs and the speed range at which flutter is sustained are provided along with the estimated amount of power produced in an IPMC sample of specified dimensions.

References

References
1.
Shahinpoor
,
M.
, and
Kim
,
K. J.
,
2001
, “
Ionic Polymer-Metal Composites: I—Fundamentals
,”
Smart Mater. Struct.
,
10
(
4
), pp.
819
833
.10.1088/0964-1726/10/4/327
2.
Kim
,
K. J.
, and
Shahinpoor
,
M.
,
2003
, “
Ionic Polymer–Metal Composites: II—Manufacturing Techniques
,”
Smart Mater. Struct.
,
12
(
1
), pp.
65
79
.10.1088/0964-1726/12/1/308
3.
Shahinpoor
,
M.
, and
Kim
,
K. J.
,
2004
, “
Ionic Polymer–Metal Composites: III—Modeling and Simulation as Biomimetic Sensors, Actuators, Transducers, and Artificial Muscles
,”
Smart Mater. Struct.
,
13
(
6
), pp.
1362
1388
.10.1088/0964-1726/13/6/009
4.
Shahinpoor
,
M.
, and
Kim
,
K. J.
,
2005
, “
Ionic Polymer–Metal Composites: IV—Industrial and Medical Applications
,”
Smart Mater. Struct.
,
14
(
1
), pp.
197
214
.10.1088/0964-1726/14/1/020
5.
Chen
,
Z.
,
Tan
,
X.
,
Will
,
A.
, and
Ziel
,
C.
,
2007
, “
A Dynamic Model for Ionic Polymer–Metal Composite Sensors
,”
Smart Mater. Struct.
,
16
(
4
), pp.
1477
1488
.10.1088/0964-1726/16/4/063
6.
Branco
,
P. J. C.
, and
Dente
,
J. A.
,
2006
, “
Derivation of a Continuum Model and Its Electric Equivalent-Circuit Representation for Ionic Polymer–Metal Composite (IPMC) Electromechanics
,”
Smart Mater. Struct.
,
15
(
2
), pp.
378
392
.10.1088/0964-1726/15/2/019
7.
Lee
,
S.
,
Park
,
H. C.
, and
Kim
,
K. J.
,
2005
, “
Equivalent Modeling for Ionic Polymer–Metal Composite Actuators Based on Beam Theories
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1363
1368
.10.1088/0964-1726/14/6/028
8.
Simpson
,
J.
,
Lumia
,
R.
, and
Martinez
,
M.
,
2013
, “
Force and Deflection Modeling of IPMC Fingers
,” Tenth IEEE International Conference on Networking, Sensing and Control (
ICNSC
), Evry, France, Apr. 10–12, pp. 136–140.10.1109/ICNSC.2013.6548725
9.
Jung
,
K.
,
Nam
,
J.
, and
Choi
,
H.
,
2003
, “
Investigations on Actuation Characteristics of IPMC Artificial Muscle Actuator
,”
Sens. Actuators A
,
107
(
2
), pp.
183
192
.10.1016/S0924-4247(03)00346-7
10.
Aureli
,
M.
,
2012
, “
Multiphysics Modeling of Ionic Polymer Metal Composites for Underwater Applications
,” Polytechnic Institute of New York University, New York, accessed Apr. 4, 2020, http://search.proquest.com/dissertations/docview/1034436555/abstract/D5416BA3E4A24AF0PQ/1?accountid=14613
11.
Dias
,
J. A. C.
,
De Marqui
,
C.
, and
Erturk
,
A.
,
2013
, “
Hybrid Piezoelectric-Inductive Flow Energy Harvesting and Dimensionless Electroaeroelastic Analysis for Scaling
,”
Appl. Phys. Lett.
,
102
(
4
), p.
044101
.10.1063/1.4789433
12.
Tiwari
,
R.
, and
Garcia
,
E.
,
2011
, “
The State of Understanding of Ionic Polymer Metal Composite Architecture: A Review
,”
Smart Mater. Struct.
,
20
(
8
), p.
083001
.10.1088/0964-1726/20/8/083001
13.
Brufau-Penella
,
J.
,
Puig-Vidal
,
M.
,
Giannone
,
P.
,
Graziani
,
S.
, and
Strazzeri
,
S.
,
2008
, “
Characterization of the Harvesting Capabilities of an Ionic Polymer Metal Composite Device
,”
Smart Mater. Struct.
,
17
(
1
), p.
015009
.10.1088/0964-1726/17/01/015009
14.
Tiwari
,
R.
, and
Kim
,
K. J.
,
2013
, “
IPMC as a Mechanoelectric Energy Harvester: Tailored Properties
,”
Smart Mater. Struct.
,
22
(
1
), p.
015017
.10.1088/0964-1726/22/1/015017
15.
Peterson
,
S. D.
, and
Porfiri
,
M.
,
2012
, “
Energy Exchange Between a Vortex Ring and an Ionic Polymer Metal Composite
,”
Appl. Phys. Lett.
,
100
(
11
), p.
114102
.10.1063/1.3693184
16.
Aureli
,
M.
,
Prince
,
C.
,
Porfiri
,
M.
, and
Peterson
,
S. D.
,
2010
, “
Energy Harvesting From Base Excitation of Ionic Polymer Metal Composites in Fluid Environments
,”
Smart Mater. Struct.
,
19
(
1
), p.
015003
.10.1088/0964-1726/19/1/015003
17.
Aureli
,
M.
,
Lin
,
W.
, and
Porfiri
,
M.
,
2009
, “
On the Capacitance-Boost of Ionic Polymer Metal Composites Due to Electroless Plating: Theory and Experiments
,”
J. Appl. Phys.
,
105
(
10
), p.
104911
.10.1063/1.3129503
18.
Cellini
,
F.
,
Cha
,
Y.
, and
Porfiri
,
M.
,
2014
, “
Energy Harvesting From Fluid-Induced Buckling of Ionic Polymer Metal Composites
,”
J. Intell. Mater. Syst. Struct.
,
25
(
12
), pp.
1496
1510
.10.1177/1045389X13508333
19.
Cellini
,
F.
,
Pounds
,
J.
,
Peterson
,
S. D.
, and
Porfiri
,
M.
,
2014
, “
Underwater Energy Harvesting From a Turbine Hosting Ionic Polymer Metal Composites
,”
Smart Mater. Struct.
,
23
(
8
), p.
085023
.10.1088/0964-1726/23/8/085023
20.
Cha
,
Y.
,
Verotti
,
M.
,
Walcott
,
H.
,
Peterson
,
S. D.
, and
Porfiri
,
M.
,
2013
, “
Energy Harvesting From the Tail Beating of a Carangiform Swimmer Using Ionic Polymer–Metal Composites
,”
Bioinspir. Biomim.
,
8
(
3
), p.
036003
.10.1088/1748-3182/8/3/036003
21.
Shafer
,
M. W.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2012
, “
Designing Maximum Power Output Into Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
21
(
8
), p.
085008
.10.1088/0964-1726/21/8/085008
22.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
,
2004
, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain
,
40
(
2
), pp.
49
58
.10.1111/j.1475-1305.2004.00120.x
23.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2005
, “
Generation and Storage of Electricity From Power Harvesting Devices
,”
J. Intell. Mater. Syst. Struct.
,
16
(
1
), pp.
67
75
.10.1177/1045389X05047210
24.
Cha
,
Y.
,
Kim
,
H.
, and
Porfiri
,
M.
,
2014
, “
Matching the Impedance of Ionic Polymer Metal Composites for Energy Harvesting
,”
Smart Mater. Struct.
,
23
(
12
), p.
127002
.10.1088/0964-1726/23/12/127002
25.
Eloy
,
C.
,
Lagrange
,
R.
,
Souilliez
,
C.
, and
Schouveiler
,
L.
,
2008
, “
Aeroelastic Instability of Cantilevered Flexible Plates in Uniform Flow
,”
J. Fluid Mech.
,
611
, pp.
97
106
.10.1017/S002211200800284X
26.
Epureanu
,
B. I.
,
Tang
,
L. S.
, and
PaïDoussis
,
M. P.
,
2004
, “
Coherent Structures and Their Influence on the Dynamics of Aeroelastic Panels
,”
Int. J. Non-Linear Mech.
,
39
(
6
), pp.
977
991
.10.1016/S0020-7462(03)00090-8
27.
Jamshidi
,
S.
,
Dardel
,
M.
,
Pashaei
,
M. H.
, and
Alashti
,
R. A.
,
2015
, “
Energy Harvesting From Limit Cycle Oscillation of a Cantilever Plate in Low Subsonic Flow by Ionic Polymer Metal Composite
,”
Proc. Inst. Mech. Eng., Part G
,
229
(
5
), pp.
814
836
.10.1177/0954410014540283
28.
Shelley
,
M.
,
Vandenberghe
,
N.
, and
Zhang
,
J.
,
2005
, “
Heavy Flags Undergo Spontaneous Oscillations in Flowing Water
,”
Phys. Rev. Lett.
,
94
(
9
), p.
094302
.10.1103/PhysRevLett.94.094302
29.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2012
, “
Hydroelastic Response and Energy Harvesting Potential of Flexible Piezoelectric Beams in Viscous Flow
,”
Phys. Fluids (1994-Present)
,
24
(
5
), p.
054106
.10.1063/1.4719704
30.
Alben
,
S.
,
2008
, “
The Flapping-Flag Instability as a Nonlinear Eigenvalue Problem
,”
Phys. Fluids (1994-Present)
,
20
(
10
), p.
104106
.10.1063/1.3000670
31.
Sirohi
,
J.
, and
Mahadik
,
R.
,
2011
, “
Piezoelectric Wind Energy Harvester for Low-Power Sensors
,”
J. Intell. Mater. Syst. Struct.
,
22
(
18
), pp.
2215
2228
.10.1177/1045389X11428366
32.
Giacomello
,
A.
, and
Porfiri
,
M.
,
2011
, “
Underwater Energy Harvesting From a Heavy Flag Hosting Ionic Polymer Metal Composites
,”
J. Appl. Phys.
,
109
(
8
), p.
084903
.10.1063/1.3569738
33.
Hobeck
,
J.
, and
Inman
,
D.
,
2012
, “
Artificial Piezoelectric Grass for Energy Harvesting From Turbulence-Induced Vibration
,”
Smart Mater. Struct.
,
21
(
10
), p.
105024
.10.1088/0964-1726/21/10/105024
34.
Fei
,
F.
, and
Li
,
W. J.
,
2009
, “
A Fluttering-to-Electrical Energy Transduction System for Consumer Electronics Applications
,” IEEE International Conference on Robotics and Biomemetics (
ROBIO
), Guilin, China, Dec. 19–23, pp.
580
585
.10.1109/ROBIO.2009.5420607
35.
Perez
,
M.
,
Boisseau
,
S.
,
Geisler
,
M.
,
Gasnier
,
P.
,
Willemin
,
J.
,
Despesse
,
G.
, and
Reboud
,
J. L.
,
2018
, “
Aeroelastic Flutter Energy Harvesters Self-Polarized by Triboelectric Effects
,”
Smart Mater. Struct.
,
27
(
1
), p.
014003
.10.1088/1361-665X/aa8b1e
36.
Ravichandran
,
A. N.
,
Calmes
,
C.
,
Serres
,
J. R.
,
Ramuz
,
M.
, and
Blayac
,
S.
,
2019
, “
Compact and High Performance Wind Actuated Venturi Triboelectric Energy Harvester
,”
Nano Energy
,
62
, pp.
449
457
.10.1016/j.nanoen.2019.05.053
37.
Theodorsen
,
T.
,
1949
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” National Advisory Committee for Aeronautics, Langley Aeronautical Lab., Langley Field, VA, Report No. NACA-TR-496.
38.
Farthing
,
S. P.
,
2013
, “
Binary Flutter as an Oscillating Windmill—Scaling & Linear Analysis
,”
Wind Eng.
,
37
(
5
), pp.
483
499
.10.1260/0309-524X.37.5.483
39.
Jin
,
Y.
,
Kim
,
J.-T.
,
Fu
,
S.
, and
Chamorro
,
L. P.
,
2019
, “
Flow-Induced Motions of Flexible Plates: fluttering, Twisting and Orbital Modes
,”
J. Fluid Mech.
,
864
, pp.
273
285
.10.1017/jfm.2019.40
40.
Fernandes
,
A. C.
, and
Mirzaeisefat
,
S.
,
2015
, “
Flow Induced Fluttering of a Hinged Vertical Flat Plate
,”
Ocean Eng.
,
95
, pp.
134
142
.10.1016/j.oceaneng.2014.12.009
41.
Eloy
,
C.
,
Souilliez
,
C.
, and
Schouveiler
,
L.
,
2007
, “
Flutter of a Rectangular Plate
,”
J. Fluids Struct.
,
23
(
6
), pp.
904
919
.10.1016/j.jfluidstructs.2007.02.002
42.
Vedeneev
,
V. V.
,
2006
, “
High-Frequency Flutter of a Rectangular Plate
,”
Fluid Dyn.
,
41
(
4
), pp.
641
648
.10.1007/s10697-006-0083-2
43.
Guo
,
C. Q.
, and
Paidoussis
,
M. P.
,
2000
, “
Stability of Rectangular Plates With Free Side-Edges in Two-Dimensional Inviscid Channel Flow
,”
ASME J. Appl. Mech
,
67
(
1
), pp.
171
176
.10.1115/1.321143
44.
Chad Gibbs
,
S.
,
Wang
,
I.
, and
Dowell
,
E.
,
2012
, “
Theory and Experiment for Flutter of a Rectangular Plate With a Fixed Leading Edge in Three-Dimensional Axial Flow
,”
J. Fluids Struct.
,
34
, pp.
68
83
.10.1016/j.jfluidstructs.2012.06.009
45.
Watanabe
,
Y.
,
Suzuki
,
S.
,
Sugihara
,
M.
, and
Sueoka
,
Y.
,
2002
, “
An Experimental Study of Paper Flutter
,”
J. Fluids Struct.
,
16
(
4
), pp.
529
542
.10.1006/jfls.2001.0435
46.
Watanabe
,
Y.
,
Isogai
,
K.
,
Suzuki
,
S.
, and
Sugihara
,
M.
,
2002
, “
A Theoretical Study of Paper Flutter
,”
J. Fluids Struct.
,
16
(
4
), pp.
543
560
.10.1006/jfls.2001.0436
47.
MathWorks, “
MATLAB Documentation
,” accessed Apr. 7, 2020, https://www.mathworks.com/help/matlab/index.html?s_tid=gn_loc_drop
48.
Heisler
,
G. M.
,
1990
, “
Mean Wind Speed Below Building Height in Residential Neighborhoods With Different Tree Densities
,”
ASHRAE Trans.
,
96
(
1
), pp.
1389
1396
. https://www.fs.usda.gov/treesearch/pubs/37282
49.
U.S. Department of Energy, 2020, “Enabling Wind Power Nationwide,” Oak Ridge, TN, accessed Apr. 4, 2020,
https://www.energy.gov/sites/prod/files/2015/05/f22/Enabling%20Wind%20Power%20Nationwide_18MAY2015_FINAL. pdf
You do not currently have access to this content.