Abstract

Drag reduction (DR) by polymers has several industrial applications, and it has also shown to produce beneficial effects on blood circulation and may represent a way to treat cardiovascular disorders. Concerning medical applications, there are basically two types of studies using drag reducing polymers (DRP), i.e., in vitro and in vivo. Although blood may be used in the in vitro studies, there are several limitations, such as incompatibility of Rh and possibility of denaturing blood proteins. Thus, biomedical researchers commonly use an artificial plasma-like saline nutrient solution (SNS), which contains ions, nutrients, a buffer to maintain pH levels and a supply of oxygen to the tissue. The behavior of the DRP in water is well reported in the literature, but the SNS components can interact with the polymers, changing their capacity to reduce drag. This study investigates the behavior of three different polymers, i.e., polyacrylamide (PAM), polyethylene oxide (PEO), and xanthan gum (XG), when applied as DRP to a commonly used SNS. For the conditions evaluated, the SNS composition does not change significantly PAM and PEO behavior, showing that they can be satisfactorily diluted in this solvent without loss of efficiency as drag reducers. However, it modifies XG conformation, drastically reducing its efficiency. The experiments with tail arterial beds suggest that PAM is efficient to reduce the perfusion pressure, but PEO and XG do not seem to be good reducers under the experimental conditions that have been analyzed, possibly due to the interaction of the drag reducers with the flow, with the solvent components and with the tissues that were kept alive during the experiments. Although PEO did not present a good performance as DRP for the conditions evaluated in the perfusion tests, its performance can be improved in other organs where the turbulence levels, or instabilities, are higher, as suggested by the rheometer tests.

References

1.
Burger
,
E. D.
,
Chorn
,
L. G.
, and
Perkins
,
T. K.
,
1980
, “
Studies of Drag Reduction Conducted Over a Broad Range of Pipeline Conditions When Flowing Prudhoe Bay Crude Oil
,”
J. Rheol.
,
24
(
5
), pp.
603
626
.10.1122/1.549579
2.
Nijs
,
L.
,
1995
, “
New Generation Drag Reducer
,”
Second International Pipeline Technology Conference
, Vol.
II
,
Elsevier, Ostend, Belgium
, Sept. 11–14, pp.
143
149
.
3.
Singh
,
R. P.
,
Singh
,
J.
,
Deshmukh
,
S. R.
, and
Kumar
,
A.
,
1985
, “
The Effect of Grafted and Ungrafted Guar Gum on Turbulent Flow of Water and on Hydraulic Conductivity of Soil
,”
IUTAM Symposium on the Influence of Polymer Additives on Velocity and Temperature Fields
,
Essen, Germany
, June 26–28, pp.
131
139
.
4.
Mostardi
,
R. A.
,
Thomas
,
L. C.
,
Greene
,
H. L.
,
VanEssen
,
F.
, and
Nokes
,
R. F.
,
1978
, “
Suppression of Atherosclerosis in Rabbits Using Drag Reducing Polymers
,”
Biorheology
,
15
, pp.
1
14
.
5.
Greene
,
H. L.
,
Mostardi
,
R. F.
, and
Nokes
,
R. F.
,
1980
, “
Effects of Drag Reducing Polymers on Initiation of Atherosclerosis
,”
Polym. Eng. Sci.
,
20
(
7
), pp.
499
504
.10.1002/pen.760200710
6.
Faruqui
,
F. I.
,
Otten
,
M. D.
, and
Polimeni
,
P. I.
,
1987
, “
Protection Against Atherogenesis With the Polymer Drag-Reducing Agent Separan AP-30
,”
Circulation
,
75
(
3
), pp.
627
635
.10.1161/01.CIR.75.3.627
7.
Kameneva
,
M. V.
,
Wu
,
Z. J.
,
Uraysh
,
A.
,
Repko
,
B.
,
Litwak
,
K. N.
,
Billiar
,
T. R.
,
Fink
,
M. P.
,
Simmons
,
R. L.
,
Griffith
,
B. P.
, and
Borovetz
,
H. S.
,
2004
, “
Blood Soluble Drag-Reducing Polymers Prevent Lethality From Hemorrhagic Shock in Acute Animal Experiments
,”
Biorheology
,
41
(
1
), pp.
53
64
.https://www.ncbi.nlm.nih.gov/pubmed/14967890
8.
Kameneva
,
M. V.
,
2012
, “
Microrheological Effects of Drag-Reducing Polymers In Vitro and In Vivo
,”
Int. J. Eng. Sci.
,
59
, pp.
168
183
.10.1016/j.ijengsci.2012.03.014
9.
Driels
,
M. R.
, and
Ayyash
,
S.
,
1976
, “
Drag Reduction in Laminar Flow
,”
Nature
,
259
(
5542
), pp.
389
390
.10.1038/259389a0
10.
Pereira
,
A. S.
,
Andrade
,
R. M.
, and
Soares
,
E. J.
,
2013
, “
Drag Reduction Induced by Flexible and Rigid Molecules in a Turbulent Flow Into a Rotating Cylindrical Double Gap Device: Comparison Between Poly (Ethylene Oxide), Polyacrylamide, and Xanthan Gum
,”
J. Non-Newtonian Fluid Mech.
,
202
, pp.
72
87
.10.1016/j.jnnfm.2013.09.008
11.
Soares
,
E. J.
,
2020
, “
Review of Mechanical Degradation and de-Aggregation of Drag Reducing Polymers in Turbulent Flows
,”
J. Non-Newtonian Fluid Mech.
,
276
, p.
104225
.10.1016/j.jnnfm.2019.104225
12.
Morris
,
E. R.
,
1977
, “
Molecular Origin of Xanthan Solution Properties
,”
Extracell. Microb. Polysaccharides, ACS Symp. Ser.
,
45
, pp.
81
89
.10.1021/symposium
13.
Norton
,
I. T.
,
Goodall
,
D. M.
,
Frangou
,
S. A.
,
Morris
,
E. R.
, and
Rees
,
D. A.
,
1984
, “
Mechanism and Dynamics of Conformational Ordering in Xanthan Polysaccharide
,”
J. Mol. Biol.
,
175
(
3
), pp.
371
394
.10.1016/0022-2836(84)90354-1
14.
Bewersdorff
,
H. W.
, and
Singh
,
R. P.
,
1988
, “
Rheological and Drag Reduction Characteristics of Xanthan Gum Solutions
,”
Rheol. Acta
,
27
(
6
), pp.
617
627
.10.1007/BF01337457
15.
Coelho
,
E. C.
,
Barbosa
,
K. C. O.
,
Soares
,
E. J.
,
Siqueira
,
R. N.
, and
Freitas
,
J. C. C.
,
2016
, “
Okra as a Drag Reducer for High Reynolds Numbers Water Flows
,”
Rheol. Acta
,
55
(
11–12
), pp.
983
991
.10.1007/s00397-016-0974-z
16.
Abdulbari
,
H. A.
,
Kamarulizam
,
S. N.
, and
Man
,
R. C.
,
2011
, “
Investigating Drag Reduction Characteristic Using Okra Mucilage as New Drag Reduction Agent
,”
J. Appl. Sci.
,
11
, pp.
1
8
.10.3923/jas.2011.2554.2561
17.
Soares
,
E. J.
,
Siqueira
,
R. N.
,
Leal
,
L. M.
,
Barbosa
,
K. C. O.
,
Cipriano
,
D. F.
, and
Freitas
,
J. C. C.
,
2019
, “
The Role Played by the Aging of Aloe Vera on Its Drag Reduction Properties in Turbulent Flows
,”
J. Non-Newtonian Fluid Mech.
,
265
, pp.
1
10
.10.1016/j.jnnfm.2018.12.010
18.
Santos
,
W. R.
,
Siqueira
,
R. N.
,
Soares
,
E. J.
, and
Caser
,
E. E.
,
2019
, “
Drag Reduction in Turbulent Flows by Diutan Gum: A Very Stable Natural Drag Reducer
,”
J. Non-Newtonian Fluid Mech.
,
276
, p.
104223
.10.1016/j.jnnfm.2019.104223
19.
Rajappan
,
A.
, and
McKinley
,
G. H.
,
2019
, “
Epidermal Biopolysaccharides From Plant Seeds Enable Biodegradable Turbulent Drag Reduction
,”
Sci. Rep.
,
9
(
1
), p.
18263
.10.1038/s41598-019-54521-3
20.
Virk
,
P. S.
,
1975
, “
Drag Reduction Fundamentals
,”
AIChE J.
,
21
(
4
), pp.
625
656
.10.1002/aic.690210402
21.
White
,
C. M.
, and
Mungal
,
M. G.
,
2008
, “
Mechanics and Prediction of Turbulent Drag Reduction Whit Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
235
256
.10.1146/annurev.fluid.40.111406.102156
22.
Soares
,
E. J.
,
Sandoval
,
G. A. B.
,
Silveira
,
L.
,
Pereira
,
A. S.
,
Trevelin
,
R.
, and
Thomaz
,
F.
,
2015
, “
Loss of Efficiency of Polymeric Drag Reducers Induced by High Reynolds Number Flows in Tubes With Imposed Pressure
,”
Phys. Fluids
,
27
(
12
), p.
125105
.10.1063/1.4937594
23.
Costalonga
,
M. L.
,
Loureiro
,
B. V.
, and
Soares
,
E. J.
,
2018
, “
Drag Reducing Flows by Polymer Solutions in Annular Spaces
,”
ASME J. Fluid Eng.
,
140
(
5
), p.
051101
.10.1115/1.4038531
24.
Elbing
,
B. R.
,
Winkel
,
E. S.
,
Solomon
,
M. J.
, and
Ceccio
,
S. L.
,
2009
, “
Degradation of Homogeneous Polymer Solutions in High Shear Turbulent Pipe Flow
,”
Exp Fluids
,
47
(
6
), pp.
1033
1044
.10.1007/s00348-009-0693-7
25.
Kamel
,
A.
, and
Shah
,
S. N.
,
2009
, “
Effects of Salinity and Temperature on Drag Reduction Characteristics of Polymers in Straight Circular Pipes
,”
J. Pet. Sci. Eng.
,
202
, pp.
23
33
.10.1016/j.petrol.2009.02.004
26.
Andrade
,
R. M.
,
Pereira
,
A. S.
, and
Soares
,
E. J.
,
2016
, “
Drag Reduction in Synthetic Seawater by Flexible and Rigid Polymer Addition Into a Rotating Cylindrical Double Gap Device
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021101
.10.1115/1.4031229
27.
Pereira
,
A. S.
, and
Soares
,
E. J.
,
2012
, “
Polymer Degradation of Dilute Solutions in Turbulent Drag Reducing Flows in a Cylindrical Double Gap Rheometer Device
,”
J. Non-Newtonian Fluid Mech.
,
179
, pp.
9
22
.10.1016/j.jnnfm.2012.05.001
28.
Bessa
,
K. L.
,
Belletati
,
J. F.
,
Dos Santos
,
L.
,
Rossoni
,
L. V.
, and
Ortiz
,
J. P.
,
2011
, “
Drag Reduction by Polyethylene Glycol in the Tail Arterial Bed of Normotensive and Hypertensive Rats
,”
Braz. J. Med. Biol. Res.
,
44
(
8
), pp.
767
777
.10.1590/S0100-879X2011007500071
29.
França
,
A. S.
,
Rossoni
,
L. V.
,
Amaral
,
S. M. C.
, and
Vassallo
,
D. V.
,
1997
, “
Reactivity of the Isolated Perfused Rat Tail Vascular Bed
,”
Braz. J. Med. Biol. Res.
,
30
(
7
), pp.
891
895
.10.1590/S0100-879X1997000700012
30.
Savings
,
J. G.
,
1964
, “
Drag Reduction Characteristics of Solutions of Macromolecules in Turbulent Pipe Flow
,”
Soc. Pet. Eng. J.
,
4
, pp.
203
214
.10.2118/867-PA
31.
Lim
,
S. T.
,
Hong
,
C. H.
,
Choi
,
H. J.
,
Lai
,
P.-Y.
, and
Chan
,
C. K.
,
2007
, “
Polymer Turbulent Drag Reduction Near the Theta Point
,”
EPL
,
80
(
5
), p.
58003
.10.1209/0295-5075/80/58003
32.
Groisman
,
A.
, and
Steinberg
,
V.
,
1996
, “
Couette-Taylor Flow in a Dilute Polymer Solution
,”
Phys. Rev. Lett.
,
77
(
8
), pp.
1480
1483
.10.1103/PhysRevLett.77.1480
33.
Keller
,
A.
,
Kiss
,
G.
, and
Mackley
,
M. R.
,
1975
, “
Polymer Drag Reduction in Taylor Vortices
,”
Nature
,
257
(
5524
), pp.
304
305
.10.1038/257304a0
34.
Tsang
,
H. Y.
, and
James
,
D. F.
,
1980
, “
Reduction of Secondary Motion in Curved Tubes by Polymer Additives
,”
J. Rheol.
,
24
(
5
), pp.
589
601
.10.1122/1.549574
35.
Shah
,
S. N.
, and
Zhou
,
Y.
,
2009
, “
Maximum Drag Reduction Asymptote of Polymeric Fluid Flow in Coiled Tubing
,”
ASME J. Fluids Eng.
,
131
(
1
), p.
011201
.10.1115/1.3026578
36.
Kameneva
,
M. V.
,
Repko
,
B. M.
,
Krasik
,
E. F.
,
Perricelli
,
B. C.
, and
Borovetz
,
H. S.
,
2003
, “
Polyethylene Glycol Additives Reduce Hemolysis in Red Blood Cell Suspensions Exposed to Mechanical Stress
,”
ASAIO J.
,
49
(
5
), pp.
537
542
.10.1097/01.MAT.0000084176.30221.CF
37.
Pribush
,
A.
,
Hatzkelzon
,
L.
,
Meyerstein
,
D.
, and
Meyerstein
,
N.
,
2013
, “
The Mechanism of the Polymer-Induced Drag Reduction in Blood
,”
Colloids Surf., B
,
103
, pp.
354
359
.10.1016/j.colsurfb.2012.11.004
You do not currently have access to this content.