Abstract

Flow over a sphere is a frequently occurring phenomenon in a range of industries. The sphere is confined in a channel in most of these applications. Therefore, it is important to understand the effect of confinement on the hydrodynamics of the flow around a sphere placed in a channel. These spheres can be bubbles, solid particles or droplets resulting in different boundary conditions (stick or slip) on the surface of the sphere. In recent years, Janus spheres having slip and stick boundary conditions on parts of the sphere have gained importance because of their potential applications. In this article, drag coefficient for a spherical particle fixed at the centerline of a channel of square cross-section is obtained computationally for stick, slip, and stick-slip surfaces of the sphere for a range of particle Reynolds numbers (1–80) and particle to channel size ratios (0.05–0.80). Further, the position of stick particle in the channel is varied to understand the effect of particle location on the drag coefficient. Correlations are proposed to calculate the drag coefficient for no-slip and Janus particles when the particle is at the channel center.

References

References
1.
Clift
,
J. R.
,
Grace
,
M. E.
, and
Weber
,
M. F.
,
1978
, “
Bubbles, Drops, and Particles
,”
Academic Press
,
New York
.
2.
Michaelides
,
E. E.
,
2006
,
Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer
,
World Scientific Publishing
,
Singapore
.
3.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge
, UK.
4.
Manica
,
R.
,
Maurice
,
H. H. W.
,
Gupta
,
R.
,
Klaseboer
,
E.
,
Claus-Dieter
,
O.
, and
Chan
,
D. Y.
,
2013
, “
Effects of Hydrodynamic Film Boundary Conditions on Bubble–Wall Impact
,”
Soft Matter
,
9
(
41
), pp.
9755
9758
.10.1039/c3sm51769a
5.
Synytska
,
A.
,
Khanum
,
R.
,
Ionov
,
L.
,
Cherif
,
C.
, and
Bellmann
,
C.
,
2011
, “
Water-Repellent Textile Via Decorating Fibers With Amphiphilic Janus Particles
,”
ACS Appl. Mater. Inter.
,
3
(
4
), pp.
1216
1220
.10.1021/am200033u
6.
Takasi
,
N.
,
Torii
,
T.
,
Takahashi
,
T.
, and
Takizawa
,
Y.
,
2006
, “
Synthesis of Monodisperse Bicolored Janus Particles With Electrical Anisotropy Using a Microfluidic Co-Flow System
,”
Adv. Mater.
,
18
, pp.
1152
1156
.10.1002/adma.200502431
7.
Zhang
,
J.
,
Zheng
,
X.
,
Cui
,
H.
, and
Silber-Li
,
Z.
,
2017
, “
The Self-Propulsion of the Spherical Pt–SiO2 Janus Micro-Motor
,”
Micromachines
,
8
(
4
), p.
123
.10.3390/mi8040123
8.
Haney
,
B.
,
Chen
,
D.
,
Cai
,
L.-H.
,
Weitz
,
D.
, and
Ramakrishnan
,
S.
,
2019
, “
Millimeter–Size Pickering Emulsions Stabilized With Janus Microparticles
,”
Langmuir
,
35
(
13
), pp.
4693
4701
.10.1021/acs.langmuir.9b00058
9.
Costantini
,
R.
,
Mollicone
,
J. P.
, and
Battista
,
F.
,
2018
, “
Drag Reduction Induced by Superhydrophobic Surfaces in Turbulent Pipe Flow
,”
Phys. Fluids
,
30
(
2
), p.
025102
.10.1063/1.5011805
10.
Dong
,
H.
,
Cheng
,
M.
,
Zhang
,
Y.
,
Wei
,
H.
, and
Shi
,
F.
,
2013
, “
Extraordinary Drag-Reducing Effect of a Superhydrophobic Coating on a Macroscopic Model Ship at High Speed
,”
J. Mater. Chem. A
,
1
(
19
), pp.
5886
5891
.10.1039/c3ta10225d
11.
Gruncell
,
B.
,
Sandham
,
N.
, and
Mchale
,
G.
,
2013
, “
Simulations of Laminar Flow Past a Superhydrophobic Sphere With Drag Reduction and Separation Delay
,”
Phys. Fluids
,
25
(
4
), p.
043601
.10.1063/1.4801450
12.
Vakarelski
,
I. U.
,
Chan
,
D. Y. C.
, and
Thoroddsen
,
S. T.
,
2014
, “
Leidenfrost Vapour Layer Moderation of the Drag Crisis and Trajectories of Superhydrophobic and Hydrophilic Spheres Falling in Water
,”
Soft Matter
,
10
(
31
), pp.
5662
5668
.10.1039/C4SM00368C
13.
Techet
,
A.
, and
Truscott
,
T.
,
2011
, “
Water Entry of Spinning Hydrophobic and Hydrophilic Spheres
,”
J. Fluid Struct.
,
27
(
5–6
), pp.
716
726
.10.1016/j.jfluidstructs.2011.03.014
14.
Vakarelski
,
I. U.
,
Klaseboer
,
E.
,
Jetly
,
A.
,
Mansoor
,
M. M.
,
Aguirre-Pablo
,
A. A.
,
Chan
,
D. Y. C.
, and
Thoroddsen
,
S. T.
,
2017
, “
Self-Determined Shapes and Velocities of Giant Near-Zero Drag Gas Cavities
,”
Sci. Adv.
,
3
(
9
), p.
e1701558
.10.1126/sciadv.1701558
15.
Shiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Des Ver. Dtsch. Ing.
,
77
, pp.
318
320
.
16.
Paine
,
P. L.
, and
Scherr
,
P.
,
1975
, “
Drag Coefficients for the Movement of Rigid Spheres Through Liquid-Filled Cylindrical Pores
,”
Biophys. J.
,
15
(
10
), pp.
1087
–10
91
.10.1016/S0006-3495(75)85884-X
17.
Hur
,
S. C.
,
Henderson-MacLennan
,
N. K.
,
McCabe
,
E. R. B.
, and
Di Carlo
,
D.
,
2011
, “
Deformability-Based Cell Classification and Enrichment Using Inertial Microfluidics
,”
Lab Chip
,
11
(
5
), pp.
912
920
.10.1039/c0lc00595a
18.
Mach
,
A. J.
, and
Di Carlo
,
D.
,
2010
, “
Continuous Scalable Blood Filtration Device Using Inertial Microfluidics
,”
Biotechnol. Bioeng.
,
107
(
2
), pp.
302
311
.10.1002/bit.22833
19.
Good
,
B. T.
,
Bowman
,
C. N.
, and
Davis
,
R. H.
,
2004
, “
Modeling and Verification of Fluid-Responsive Polymer Pumps for Microfluidic Systems
,”
Chem. Eng. Sci.
,
59
(
24
), pp.
5967
5974
.10.1016/j.ces.2004.07.041
20.
van den Beld
,
W. T. E.
,
Cadena
,
N. L.
,
Bomer
,
J.
,
de Weerd
,
E. L.
,
Abelmann
,
L.
,
van den Berg
,
A.
, and
Eijkel
,
J. C. T.
,
2015
, “
Bidirectional Microfluidic Pumping Using an Array of Magnetic Janus Microspheres Rotating Around Magnetic Disks
,”
Lab Chip
,
15
(
13
), pp.
2872
2878
.10.1039/C5LC00199D
21.
Björnmalm
,
M.
,
Yan
,
Y.
, and
Caruso
,
F.
,
2014
, “
Engineering and Evaluating Drug Delivery Particles in Microfluidic Devices
,”
J. Control Release
,
190
, pp.
139
149
.10.1016/j.jconrel.2014.04.030
22.
Feng
,
Z.
, and
Michaelides
,
E.
,
2001
, “
Drag Coefficients of Viscous Spheres at Intermediate and High Reynolds Numbers
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
841
849
.10.1115/1.1412458
23.
Haberman
,
W. L.
, and
Sayre
,
R. M.
,
1958
, “
Motion of Rigid and Fluid Spheres in Stationary and Moving Liquids Inside Cylindrical Tubes
,” David Taylor Model Basin, U.S. Navy, Washington, DC, Report No. 1143.
24.
Iwaoka
,
M.
, and
Ishi
,
T.
,
1979
, “
Experimental Wall Correction Factors of Single Solid Spheres in Circular Cylinders
,”
J. Chem. Eng. Jpn.
,
12
(
3
), pp.
239
242
.10.1252/jcej.12.239
25.
Bohlin
,
T.
,
1960
,
On the Drag of a Rigid Sphere Moving in a Viscous Liquid Inside a Cylindrical Tube
,
Elander
,
Stockholm, Sweden
, p
155
.
26.
Coutanceau
,
M.
, and
Bouard
,
R.
,
1977
, “
Experimental Determination of the Main Features of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation—Part 1: Steady Flow
,”
J. Fluid Mech.
,
79
(
2
), pp.
231
256
.10.1017/S0022112077000135
27.
Johansson
,
H.
,
1974
, “
A Numerical Solution of the Flow Around a Sphere in a Circular Cylinder
,”
Chem. Eng. Comm.
,
1
(
6
), pp.
271
280
.10.1080/00986447408960437
28.
Miyamura
,
A.
,
Iwasaki
,
S.
, and
Ishii
,
T.
,
1981
, “
Experimental Wall Correction Factors of Single Solid Spheres in Triangular and Square Cylinders, and Parallel Plates
,”
Int. J. Multiphase Flow
,
7
(
1
), pp.
41
46
.10.1016/0301-9322(81)90013-6
29.
Faxén
,
H.
,
1922
, “Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit,
die zwischen zwei parallelen ebenen Wänden eingeschlossen ist
,”
Ann. Phys.
,
373
(
10
), p.
89
.
30.
Happel
,
J.
, and
Brenner
,
H.
,
1967
,
Low Reynolds Number Hydrodynamics
,
Marinus Nijhoff Publishers
,
The Hague, The Netherlands
.
31.
Wang
,
H.
, and
Skalak
,
R.
,
1969
, “
Viscous Flow in a Cylindrical Tube Containing a Line of Spherical Particles
,”
J. Fluid Mech.
,
38
(
1
), pp.
75
96
.10.1017/S002211206900005X
32.
Safaei
,
S.
,
Archereau
,
A.
,
Hendy
,
C. S.
, and
Willmott
,
R. G.
,
2019
, “
Molecular Dynamics Simulations of Janus Nanoparticles in a Fluid Flow
,”
Soft Matter
,
15
(
33
), pp.
6742
6752
.10.1039/C9SM00694J
33.
Das
,
S.
,
Garg
,
A.
,
Campbell
,
A. I.
,
Howse
,
J.
,
Sen
,
A.
,
Velegol
,
D.
,
Golestanian
,
R.
, and
Ebbens
,
S. J.
,
2015
, “
Boundaries Can Steer Active Janus Spheres
,”
Nat. Commun.
,
6
(
1
), p.
8999
.10.1038/ncomms9999
34.
Uspal
,
W. E.
,
Popescu
,
M. N.
,
Tasinkevych
,
M.
, and
Dietrich
,
S.
,
2018
, “
Shape-Dependent Guidance of Active Janus Particles by Chemically Patterned Surfaces
,”
New. J. Phys.
,
20
(
1
), p.
015013
.10.1088/1367-2630/aa9f9f
35.
Sun
,
Q.
,
Klaseboer
,
E.
,
Khoo
,
B. C.
, and
Chan
,
D. Y.
,
2013
, “
Stokesian Dynamics of Pill-Shaped Janus Particles With Stick and Slip Boundary Conditions
,”
Phys. Rev. E
,
87
(
4
), p.
043009
.10.1103/PhysRevE.87.043009
36.
Shklyaev
,
S.
,
Ivantsov
,
A.
,
Díaz-Maldonado
,
M.
, and
Córdova-Figueroa
,
U.
,
2013
, “
Dynamics of a Janus Drop in an External Flow
,”
Phys. Fluids
,
25
(
8
), p.
082105
.10.1063/1.4817541
37.
Swan
,
J.
, and
Khair
,
A.
,
2008
, “
On the Hydrodynamics of ‘Slip–Stick’ Spheres
,”
J. Fluid Mech.
,
606
, pp.
115
132
.10.1017/S0022112008001614
38.
Trofa
,
M.
,
D'Avino
,
G.
, and
Maffettone
,
P. L.
,
2019
, “
Numerical Simulations of a Stick-Slip Spherical Particle in Poiseuille Flow
,”
Phys. Fluids
,
31
(
8
), p.
083603
.10.1063/1.5109305
39.
Fayon
,
A. M.
, and
Happel
,
J.
,
1960
, “
Effect of a Cylindrical Boundary on a Fixed Rigid Sphere in a Moving Viscous Fluid
,”
AIChE J.
,
6
(
1
), pp.
55
58
.10.1002/aic.690060111
40.
Eichhorn
,
R.
, and
Small
,
S.
,
1964
, “
Experiments on the Lift and Drag of Spheres Suspended in a Poiseuille Flow
,”
J. Fluid Mech.
,
20
(
3
), pp.
513
527
.10.1017/S0022112064001380
41.
Razaghi
,
R.
, and
Saidi
,
M. H.
,
2016
, “
Experimental Investigation of Drag and Lift Forces on Microparticles in Low Reynolds Number Poiseuille Flow in Microchannel
,”
J. Disp. Sci. Technol.
,
37
(
12
), pp.
1767
1777
.10.1080/01932691.2016.1138868
42.
Krishnan
,
S.
, and
Arvamudan
,
K.
,
2011
, “
Effects of Particle Diameter and Position on Hydrodynamics Around a Confined Sphere
,”
Ind. Eng. Chem. Res.
,
50
(
23
), pp.
13137
13160
. 10.1021/ie2000852
43.
ANSYS,
2019
, “
ANSYS Academic Research Fluent, Release 19.2, Help System, Theory Guide
,” ANSYS Inc., Canonsburg, PA.
44.
Barth
,
T. J.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 1989-366
. 10.2514/6.1989-366
45.
Issa
,
R. I.
,
1986
, “
Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
46.
Peyret
,
R.
,
1996
,
Handbook of Computational Fluid Mechanics
,
Academic Press Limited
,
Cambridge, MA
.
47.
Michaelides
,
E. E.
,
2015
, “
Brownian Movement and Thermophoresis of Nanoparticles in Liquids
,”
Int. J. Heat Mass Transfer
,
81
, pp.
179
187
.10.1016/j.ijheatmasstransfer.2014.10.019
48.
Michaelides
,
E.
,
2016
, “
Wall Effects on the Brownian Movement, Thermophoresis and Deposition of Nanoparticles in Liquids
,”
ASME J. Fluids Eng.
,
138
, p.
051303
.10.1115/1.4032030
You do not currently have access to this content.