Abstract

This paper addresses the problem of computational fluid dynamics (CFD) modeling of gaseous cavitation (GC) in lubricating positive-displacement pumps (PDPs). It is important for designers and analysts to predict the dynamic features of air release/dissolution processes which characterize this phenomenon, along with their effects on filling capability and noise-vibration-harshness behavior of the machine. The focus is on the empirical tuning of the commercial homogeneous-flow cavitation model known as dissolved gas model (DGM). Considering an automotive case study of a balanced vane pump (BVP), the effects of air modeling on numerical predictions of discharge flow/pressure ripple and volumetric efficiency have been studied. The tuning time parameters of the model have been correlated to the machine Reynolds number as part of a simplified theoretical background based on dimensional analysis. Considering experimental data at different operating conditions, the tuned model has shown a good capacity in predicting the pressure ripple and the flowrate at the discharge of the pump.

References

References
1.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Pasadena, CA
.
2.
Hodges
,
P. K. B.
,
1996
,
Hydraulic Fluids
,
Arnold
,
London
.
3.
Schweitzer
,
P. H.
, and
Szebehely
,
V. G.
,
1950
, “
Gas Evolution in Liquids and Cavitation
,”
J. Appl. Phys.
,
21
(
12
), pp.
1218
1224
.10.1063/1.1699579
4.
Szebehely
,
V. G.
,
1951
, “
Relation Between Gas Evolution and Physical Properties of Liquids
,”
J. Appl. Phys.
,
22
(
5
), pp.
627
628
.10.1063/1.1700019
5.
Totten
,
G. E.
,
Bishop
,
R. J.
, Jr.
,
Suzuki
,
R.
, and
Tanaka
,
Y.
,
2001
, “
Air Entrainment—How It Happens, How to Avoid It
,”
Hydraul. Pneumatics
,
54
(
7
), pp.
39
41
.https://www.hydraulicspneumatics.com/technologies/hydraulic-fluids/article/21883689/air-entrainment-how-it-happens-how-to-avoid-it
6.
Washio
,
S.
,
2014
,
Recent Developments in Cavitation Mechanisms: A Guide for Scientists and Engineers
,
Woodhead Publishing
,
Sawston, UK
.
7.
Zhou
,
J.
,
Vacca
,
A.
, and
Casoli
,
P.
,
2014
, “
A Novel Approach for Predicting the Operation of External Gear Pumps Under Cavitating Conditions
,”
Simul. Modell. Pract. Theory
,
45
, pp.
35
49
.10.1016/j.simpat.2014.03.009
8.
Zhou
,
J.
,
Vacca
,
A.
, and
Manhartsgruber
,
B.
,
2013
, “
A Novel Approach for the Prediction of Dynamic Features of Air Release and Absorption in Hydraulic Oils
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091305
.10.1115/1.4024864
9.
da Silva
,
A. B.
, and
de Freitas Rachid
,
F. B.
,
2013
, “
Modeling of Release and Absorption of Gas in Liquid–Gas Flows Within a Consistent Thermodynamic Framework
,”
Int. J. Eng. Sci.
,
66–67
, pp.
21
43
.10.1016/j.ijengsci.2013.02.007
10.
Furno
,
F.
, and
Blind
,
V.
,
2016
, “
Effects of Air Dissolution Dynamics on the Behaviour of Positive-Displacement Vane Pumps: A Simulation Approach
,”
Proceedings of the Tenth International Fluid Power Conference
, Dresden, Germany, Mar. 8–10, pp.
361
372
.https://tud.qucosa.de/landing-page/?tx_dlf[id]=https%3A%2F%2Ftud.qucosa.de%2Fapi%2Fqucosa%253A29316%2Fmets
11.
Shah
,
Y. G.
,
Vacca
,
A.
,
Dabiri
,
S.
, and
Frosina
,
E.
,
2018
, “
A Fast Lumped Parameter Approach for the Prediction of Both Aeration and Cavitation in Gerotor Pumps
,”
Meccanica
,
53
(
1–2
), pp.
175
191
.10.1007/s11012-017-0725-y
12.
Rundo
,
M.
,
Squarcini
,
R.
, and
Furno
,
F.
,
2018
, “
Modelling of a Variable Displacement Lubricating Pump With Air Dissolution Dynamics
,”
SAE Int. J. Engines
,
11
(
2
), pp.
111
126
.10.4271/03-11-02-0008
13.
Schleihs
,
C.
,
Viennet
,
E.
,
Deeken
,
M.
,
Ding
,
H.
,
Xia
,
Y.
,
Lowry
,
S.
, and
Murrenhoff
,
H.
,
2014
, “
3D-CFD Simulation of an Axial Piston Displacement Unit
,”
Proceedings of the Ninth International Fluid Power Conference
, Aachen, Germany, Mar. 24-25, pp.
332
343
.https://www.ifas.rwth-aachen.de/go/id/psri/file/225272?lidx=1
14.
Altare
,
G.
, and
Rundo
,
M.
,
2016
, “
Computational Fluid Dynamics Analysis of Gerotor Lubricating Pumps at High-Speed: Geometric Features Influencing the Filling Capability
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111101
.10.1115/1.4033675
15.
Altare
,
G.
, and
Rundo
,
M.
,
2017
, “
Advances in Simulation of Gerotor Pumps: An Integrated Approach
,”
Proc. Inst. Mech. Eng., Part C
,
231
, pp.
1221
1236
.10.1177/0954406217694663
16.
Frosina
,
E.
,
Senatore
,
A.
, and
Rigosi
,
M.
,
2017
, “
Study of a High-Pressure External Gear Pump With a Computational Fluid Dynamic Modeling Approach
,”
Energies
,
10
(
8
), p.
1113
.10.3390/en10081113
17.
Rundo
,
M.
,
Altare
,
G.
, and
Casoli
,
P.
,
2019
, “
Simulation of the Filling Capability in Vane Pumps
,”
Energies
,
12
(
2
), p.
283
.10.3390/en12020283
18.
Casari
,
N.
,
Fadiga
,
E.
,
Pinelli
,
M.
,
Randi
,
S.
, and
Suman
,
A.
,
2019
, “
Pressure Pulsation and Cavitation Phenomena in a Micro-ORC System
,”
Energies
,
12
(
11
), p.
2186
.10.3390/en12112186
19.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
20.
Rundo
,
M.
, and
Pavanetto
,
M. A.
,
2018
, “
Comprehensive Simulation Model of a High-Pressure Variable Displacement Vane Pump for Industrial Applications
,”
ASME
Paper No. DETC2018-85099.10.1115/DETC2018-85099
21.
Simerics Inc.
,
2019
, “
PumpLinx Manuals 4.0
,” Simerics Inc., Bellevue, WA.
22.
Rundo
,
M.
,
2017
, “
Models for Flow Rate Simulation in Gear Pumps: A Review
,”
Energies
,
10
(
9
), p.
1261
.10.3390/en10091261
23.
Giuffrida
,
A.
, and
Lanzafame
,
R.
,
2005
, “
Cam Shape and Theoretical Flow Rate in Balanced Vane Pumps
,”
Mech. Mach. Theory
,
40
(
3
), pp.
353
369
.10.1016/j.mechmachtheory.2004.07.008
24.
Lavenson
,
D. M.
,
Kelkar
,
A. V.
,
Daniel
,
A. B.
,
Mohammad
,
S. A.
,
Kouba
,
G.
, and
Aichele
,
C. P.
,
2016
, “
Gas Evolution Rates—A Critical Uncertainty in Challenged Gas-Liquid Separations
,”
J. Pet. Sci. Eng.
,
147
, pp.
816
828
.10.1016/j.petrol.2016.10.005
25.
Wiggert
,
D. C.
, and
Sundquist
,
M. J.
,
1979
, “
The Effect of Gaseous Cavitation on Fluid Transients
,”
ASME J. Fluids Eng.
,
101
(
1
), pp.
79
86
.10.1115/1.3448739
26.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
,
Stelson
,
K. A.
,
Wang
,
F.
,
Mohanty
,
B.
, and
Gust
,
M. J.
,
2015
, “
Vane Pump Power Split Transmission: Three Dimensional Computational Fluid Dynamics Modeling
,”
ASME
Paper No. FPMC2015-9518.10.1115/FPMC2015-9518
27.
Van Wijngaarden
,
L.
,
1967
, “
On the Growth of Small Cavitation Bubbles by Convective Diffusion
,”
Int. J. Heat Mass Transfer
,
10
(
2
), pp.
127
134
.10.1016/0017-9310(67)90093-2
28.
Kranenburg
,
C.
,
1974
, “
Transient Cavitation in Pipelines
,” Department of Civil Engineering, Delft University of Technology, Delft, The Netherlands,
Report No. 73-2
.
29.
Kessal
,
M.
, and
Bennacer
,
R.
,
2005
, “
A New Gas Release Model for a Homogeneous Liquid–Gas Mixture Flow in Pipelines
,”
Int. J. Pressure Vessels Piping
,
82
(
9
), pp.
713
721
.10.1016/j.ijpvp.2005.03.005
30.
de Freitas Rachid
,
F. B.
,
2014
, “
Modeling Gaseous and Vaporous Cavitation in Liquid Flows Within the Context of the Thermodynamics of Irreversible Processes
,”
Int. J. Non-Linear Mech.
,
65
, pp.
245
252
.10.1016/j.ijnonlinmec.2014.06.006
31.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2006
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
,
New York
.
32.
Cussler
,
E. L.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
, 3rd ed.,
Cambridge University Press
,
New York
.
33.
Bade
,
D. L.
,
2009
, “
Gas Exchange at the Air-Water Interface
,”
Encyclopedia of Inland Waters
,
Academic Press
,
Oxford, UK
, pp.
70
78
.
34.
Ding
,
H.
,
Vesser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.10.1115/1.4003196
35.
O'Shea
,
C.
,
Xia
,
Y.
, and
Lowry
,
S.
,
2013
, “
Analysis and Optimization of an Electrohydraulic Power Pack for Use in a Fully-Active Vehicle Suspension Through the Use of Computational Fluid Dynamics
,”
ASME
Paper No. FPMC2013-4402.10.1115/FPMC2013-4402
36.
Andrade
,
J.
,
2013
, “
Solubility Calculations for Hydraulic Gas Compressors
,” Mining Innovation Rehabilitation and Applied Research Corporation, Greater Sudbury, ON, Canada,
Report
.https://www.mirarco.org/wp-content/uploads/mirarco_ERCM_Projects/JuliaAndrade-SolubilityCalculationsForHydraulicGasCompressors.pdf
37.
Nykanen
,
T. H. A.
,
Esque
,
S.
, and
Ellman
,
A. U.
,
2000
, “
Comparison of Different Fluid Models
,”
Proceedings of the Bath Workshop on Power Transmission and Motion Control (PTMC 2000)
, Bath, UK, Sept.
13
15
.
38.
Ni
,
W. W.
,
Bartholme
,
D.
, and
Cass
,
M.
,
2013
, “
The CFD Analysis of Pressure Pulsation in the Aircraft Engine and Control Systems Lubrication Pump
,”
SAE Int. J. Aerosp.
,
6
(
1
), pp.
49
55
.10.4271/2013-01-2084
39.
Ding
,
H.
,
Lu
,
X. J.
, and
Jiang
,
B.
,
2012
, “
A CFD Model for Ordbital Gerotor Motor
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p. 062006.10.1088/1755-1315/15/6/062006
40.
Inaguma
,
Y.
, and
Hibi
,
A.
,
2007
, “
Reduction of Friction Torque in Vane Pump by Smoothing Cam Ring Surface
,”
Proc. Inst. Mech. Eng., Part C
,
221
, pp.
527
534
.10.1243/0954406JMES225
41.
Kazama
,
T.
,
2016
, “
Vibration and Temperature Variation of the Cam Ring of a Hydraulic Vane Pump Associated With Vane Tip Detachment
,”
J. Adv. Mech. Des., Syst., Manuf.
,
10
(
9
), p. JAMDSM0107.10.1299/jamdsm.2016jamdsm0107
42.
MathWorks Inc.
,
2019
, “
MATLAB Documentation
,” MathWorks Inc., Natick, MA, accessed Aug. 4, 2019, https://www.mathworks.com/help/matlab/
43.
Flucon
,
2019
, “
Measuring Principle of the CGS
,” Flucon Fluid Control GmbH, Osterode am Harz, Germany, accessed July 30, 2019, https://flucon.de/en/fluid-lexicon/measuring-principle-of-the-cgs
44.
Kulite Semiconductor Products, Inc.
,
2019
, “
Ruggedized Automotive Pressure Transducers. XTL-123E-190 (M) SERIES
,” Kulite Semiconductor Products, Inc., Leonia, NJ, accessed July 30, 2019, http://www.kulitesensors.com.cn/pdf_Data_Sheets/XTL-123E-190.pdf
45.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
46.
Comini
,
G.
,
Croce
,
G.
, and
Nobile
,
E.
,
2014
,
Fondamenti di Termofluidodinamica Computazionale
,
Servizi Grafici Editoriali
,
Brusegana, Italy
.
47.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 4th ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.