Abstract

In order to analyze the flow stability of compressors rapidly in the design stage, a fast analysis method is developed in this paper. This method takes the base flow on each streamline at different spanwise locations as the research object and characterizes the effect of blade rows on the internal flow by establishing a body force model. Therefore, it is capable of taking the complex three-dimensional blade geometry and the abundant flow details into account, and what's more, it has a significantly high computational efficiency, which makes it available to engineering practice. Based on the eigenvalue theory, the flow stability problem is transformed into the eigenvalue problem, and the system stability is determined by the eigenvalue obtained by utilizing the singular value decomposition method. The flow stability of NASA Rotor 37 is analyzed to validate the reliability of the developed approach, and the results show that this analysis method is able to capture the process of stability deterioration with throttling and identify the blade tip region as the most unstable area. In order to further study the influence of blade geometry on compressor stability, a number of swept rotors are designed by modifying the stacking line of NASA Rotor 37. The assessment results via the developed method indicate that the forward sweep defined in this work can significantly improve the stability of the flow field in the tip region, while the backward sweep has the opposite effect.

References

References
1.
Tan
,
C. S.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
275
300
.10.1146/annurev-fluid-121108-145603
2.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.10.1115/1.2929209
3.
Paduano
,
J. D.
,
Epstein
,
A. H.
,
Valavani
,
L.
,
Longley
,
J. P.
,
Greitzer
,
E. M.
, and
Guenette
,
G. R.
,
1993
, “
Active Control of Rotating Stall in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
115
(
1
), pp.
48
56
.10.1115/1.2929217
4.
Sun
,
X.
,
Sun
,
D.
,
Liu
,
X.
,
Yu
,
W.
, and
Wang
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment: Part I—Methodology
,”
AIAA J. Propul. Power
,
30
(
5
), pp.
1224
1235
.10.2514/1.B34900
5.
Sun
,
D.
,
Liu
,
X.
,
Jin
,
D.
,
Gui
,
X.
, and
Sun
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment: Part II—Experiment
,”
AIAA J. Propul. Power
,
30
(
5
), pp.
1236
1247
.10.2514/1.B34901
6.
Suder
,
K. L.
,
Hathaway
,
M. D.
,
Thorp
,
S. A.
,
Strazisar
,
A. J.
, and
Bright
,
M. B.
,
2001
, “
Compressor Stability Enhancement Using Discrete Tip Injection
,”
ASME J. Turbomach.
,
123
(
1
), pp.
14
23
.10.1115/1.1330272
7.
Lieblein
,
S.
,
Schwenk
,
F. C.
, and
Broderick
,
R. L.
,
1953
, “
Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial-Flow-Compressor Blade Elements
,” Technical Report Archive and Image Library, Lewis Flight Propulsion Laboratory, Report No.
NACA RM E53D01
.https://digital.library.unt.edu/ark:/67531/metadc59727/
8.
Koch
,
C. C.
,
1981
, “
Stalling Pressure Rise Capability of Axial Flow Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
103
(
4
), pp.
645
656
.10.1115/1.3230787
9.
Wennerstrom
,
A. J.
,
1989
, “
Low Aspect Ratio Axial Flow Compressors: Why and What It Means
,”
ASME J. Turbomach.
,
111
(
4
), pp.
357
365
.10.1115/1.3262280
10.
Zheng
,
X.
, and
Li
,
Z.
,
2017
, “
Blade-End Treatment to Improve the Performance of Axial Compressors: An Overview
,”
Prog. Aerosp. Sci.
,
88
, pp.
1
14
.10.1016/j.paerosci.2016.09.001
11.
Helming
,
K.
,
1996
, “
Numerical Analysis of Sweep Effects in Shrouded Propfan Rotors
,”
AIAA J. Propul. Power
,
12
(
1
), pp.
139
145
.10.2514/3.24002
12.
Wadia
,
A. R.
,
Szucs
,
P. N.
, and
Crall
,
D. W.
,
1998
, “
Inner Workings of Aerodynamic Sweep
,”
ASME J. Turbomach.
,
120
(
4
), pp.
671
682
.10.1115/1.2841776
13.
Wright
,
T.
, and
Simmons
,
W. E.
,
1990
, “
Blade Sweep for Low-Speed Axial Fans
,”
ASME J. Turbomach.
,
112
(
1
), pp.
151
158
.10.1115/1.2927413
14.
Yamaguchi
,
N.
,
Tominaga
,
T.
,
Hattori
,
S.
, and
Mitsuhashi
,
T.
,
1991
, “
Secondary-Loss Reduction by Forward-Skewing of Axial Compressor Rotor Blading
,”
The International Gas Turbine Congress
, Yokohama, pp.
61
68
.
15.
Corsini
,
A.
, and
Rispoli
,
F.
,
2004
, “
Using Sweep to Extend the Stall-Free Operational Range in Axial Fan Rotors
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
3
), pp.
129
139
.10.1243/095765004323049869
16.
Benini
,
E.
, and
Biollo
,
R.
,
2007
, “
Aerodynamics of Swept and Leaned Transonic Compressor-Rotors
,”
Appl. Energy
,
84
(
10
), pp.
1012
1027
.10.1016/j.apenergy.2007.03.003
17.
Mohammed
,
K. P.
, and
Raj
,
D. P.
,
1977
, “
Investigations on Axial Flow Fan Impellers With Forward Swept Blades
,”
ASME J. Fluids Eng.
,
99
(
3
), pp.
543
547
.10.1115/1.3448839
18.
Hah
,
C.
,
Puterbaugh
,
S. L.
, and
Wadia
,
A. R.
,
1998
, “
Control of Shock Structure and Secondary Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep
,”
ASME
Paper No. 98-GT-561.10.1115/98-GT-561
19.
Denton
,
J. D.
, and
Xu
,
L.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance
,”
ASME
Paper No. GT2002-30327.10.1115/GT2002-30327
20.
GüMmer
,
V.
,
Wenger
,
U.
, and
Kau
,
H.-P.
,
2001
, “
Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors
,”
ASME J. Turbomach.
,
123
(
1
), pp.
40
48
.10.1115/1.1330268
21.
Passrucker
,
H.
,
Engber
,
M.
,
Kablitz
,
S.
, and
Hennecke
,
D. K.
,
2003
, “
Effect of Forward Sweep in a Transonic Compressor Rotor
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
357
365
.10.1243/095765003322315414
22.
Ramakrishna
,
P. V.
, and
Govardhan
,
M.
,
2009
, “
Combined Effects of Forward Sweep and Tip Clearance on the Performance of Axial Flow Compressor Stage
,”
ASME
Paper No. GT2009-59840.10.1115/GT2009-59840
23.
Stenning
,
A. H.
,
1980
, “
Rotating Stall and Surge
,”
ASME J. Fluids Eng.
,
102
(
1
), pp.
14
20
.10.1115/1.3240618
24.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
25.
Bonnaure
,
L. P.
,
1991
, “
Modelling High Speed Multistage Compressor Stability
,” MS thesis,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
, Cambridge, MA.
26.
Sun
,
X.
,
1996
, “
On the Relation Between the Inception of Rotating Stall and Casing Treatment
,”
AIAA
Paper No. 1996-2579.10.2514/6.1996-2579
27.
He
,
L.
,
1997
, “
Computational Study of Rotating-Stall Inception in Axial Compressors
,”
AIAA J. Propul. Power
,
13
(
1
), pp.
31
38
.10.2514/2.5147
28.
Sun
,
X.
,
Liu
,
X.
,
Hou
,
R.
, and
Sun
,
D.
,
2013
, “
A General Theory of Flow-Instability Inception in Turbomachinery
,”
AIAA J.
,
51
(
7
), pp.
1675
1687
.10.2514/1.J052186
29.
Theofilis
,
V.
,
2011
, “
Global Linear Instability
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
319
352
.10.1146/annurev-fluid-122109-160705
30.
Sirovich
,
L.
,
1967
, “
Initial and Boundary Value Problems in Dissipative Gas Dynamics
,”
Phys. Fluids
,
10
(
1
), pp.
24
34
.10.1063/1.1761987
31.
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2014
, “
Basic Studies of Flow-Instability Inception in Axial Compressors Using Eigenvalue Method
,”
ASME J. Fluids Eng.
,
136
(
3
), pp.
644
649
.10.1115/1.4026417
32.
Liu
,
X.
,
Zhou
,
Y.
,
Sun
,
X.
, and
Sun
,
D.
,
2015
, “
Calculation of Flow Instability Inception in High Speed Axial Compressors Based on an Eigenvalue Theory
,”
ASME J. Turbomach.
,
137
(
6
), p.
061007
.10.1115/1.4028768
33.
Ma
,
Y.
,
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2015
, “
Numerical Prediction of Stall Inception in Centrifugal Compressor Using Eigenvalue Method
,”
ASME
Paper No. GT2015-42590.10.1115/GT2015-42590
34.
Sun
,
X.
,
Ma
,
Y.
,
Liu
,
X.
, and
Sun
,
D.
,
2016
, “
Flow Stability Model of Centrifugal Compressors Based on Eigenvalue Approach
,”
AIAA J.
,
54
(
8
), pp.
2361
2376
.10.2514/1.J054350
35.
He
,
C.
,
Ma
,
Y.
,
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2018
, “
Aerodynamic Instabilities of Swept Airfoil Design in Transonic Axial-Flow Compressors
,”
AIAA J.
,
56
(
5
), pp.
1
878–
1893
.10.2514/1.J056053
36.
Chang
,
H.
,
Zhu
,
F.
,
Jin
,
D.
, and
Gui
,
X.
,
2015
, “
Effect of Blade Sweep on Inlet Flow in Axial Compressor Cascades
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
103
111
.10.1016/j.cja.2014.12.023
37.
Sun
,
D.
,
Liu
,
X.
, and
Sun
,
X.
,
2015
, “
An Evaluation Approach for the Stall Margin Enhancement With Stall Precursor-Suppressed Casing Treatment
,”
ASME J. Fluids Eng.
,
137
(
8
), p.
081102
.10.1115/1.4030017
38.
Dong
,
X.
,
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2014
, “
Experimental Investigation on SPS Casing Treatment With Bias Flow
,”
Chin. J. Aeronautics
,
27
(
6
), pp.
1352
1362
.10.1016/j.cja.2014.10.001
39.
Peyret
,
R.
,
2002
, “
Spectral Methods for Incompressible Viscous Flow
,” (
Applied Mathematical Sciences
, Vol.
148), Srpinger, New York, pp. 157–166.
40.
Don
,
W. S.
, and
Solomonoff
,
A.
,
1995
, “
Accuracy and Speed in Computing the Chebyshev Collocation Derivative
,”
SIAM J. Sci. Comput.
,
16
(
6
), pp.
1253
1268
.10.1137/0916073
41.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,” Lewis Research Center, Cleveland, OH, Report No. NASA TP 1337.
42.
Suder
,
K. L.
,
1996
, “
Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor With Respect to the Development of Blockage and Loss
,” Lewis Research Center, Cleveland, OH, Report No. NASA TM 107310.
You do not currently have access to this content.