Abstract

This paper is to solve the problem of poor stability of bidirectional shaft pumps, under reverse and low-head condition. In this study, computational fluid dynamics (CFD) calculations are carried out and verified by model test, under four theoretical conditions: steady, unsteady, unidirectional, and bidirectional fluid–solid coupling. The S-shaped elbow of bidirectional pump was divided into four schemes according to the ratio b of the centerline's radius. The effects of b value on the efficiency and stability in the forward and reverse condition of the pump device were analyzed and compared. When b value was 0.75, the efficiency and stability of the pump device proved best. The frequency domain of pressure pulsation and dynamic stress of bidirectional pump under zero and design head condition was analyzed. It was found that the bidirectional pump had main frequencies corresponding to 10 and four times the rotation frequency of the runner (fn), for most working conditions. While there is a subfrequency of 14fn in zero head operation, which is similar to the natural frequencies of first- and second-order, calculated in the modal analysis. This may be the cause of the larger vibration of the bidirectional pump when it starts under the condition of zero head.

References

References
1.
Qi
,
Y.
,
2015
, “
Stress and Modal Analysis of Bi-Directional Pump Blades
,”
Yangzhou University
,
Yangzhou, Jiangsu, China
.
2.
Zhang
,
D.
,
Shi
,
W.
,
Van Esch
,
B. P. M.
,
Shi
,
L.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Trajectory and Dynamics in an Axial Flow Pump
,”
Comput. Fluids
,
112
(
2
), pp.
61
71
.10.1016/j.compfluid.2015.01.010
3.
Jiao
,
W.
,
Li
,
C.
,
Can
,
L.
, and
Di
,
Z.
,
2019
, “
Study on Flow and Pressure Fluctuation Characteristics of Two-Way Pumping System With Super Low Head and Large Flow Rate
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
(
3
), p.
032011
.10.1088/1755-1315/240/3/032011
4.
Chen
,
E.
,
Ma
,
Z.
,
Zhao
,
G.
,
Li
,
G.
,
Yang
,
A.
, and
Nan
,
G.
,
2016
, “
Numerical Investigation on Vibration and Noise Induced by Unsteady Flow in an Axial-Flow Pump
,”
J. Mech. Sci. Technol.
,
30
(
12
), pp.
5397
5404
.10.1007/s12206-016-1107-4
5.
Park
,
H. S.
,
Miao
,
F.
, and
Nguyen
,
T. T.
,
2018
, “
Impeller Design for an Axial-Flow Pump Based on Multi-Objective Optimization
,”
Indian J. Eng. Mater. Sci.
,
25
(
2
), pp.
183
190
.http://nopr.niscair.res.in/handle/123456789/44719
6.
Ma
,
P.
,
Wang
,
J.
,
Shan
,
D.
,
Liu
,
W.
, and
Yang
,
Y.
,
2013
, “
Effect of Blading Density Degree on Bidirectional Axial Flow Pump Performance
,”
Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys.
,
34
(
10
), pp.
1851
1855
. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCRB201310013.htm
7.
Tao
,
R.
,
Xiao
,
R.
,
Wang
,
F.
, and
Liu
,
W.
,
2019
, “
Improving the Cavitation Inception Performance of a Reversible Pump-Turbine in Pump Mode by Blade Profile Redesign: Design Concept, Method and Applications
,”
Renewable Energy
, 133, pp. 325–342.10.1016/j.renene.2018.09.108
8.
Deyou
,
L.
,
Hongjie
,
W.
,
Gaoming
,
X.
,
Ruzhi
,
G.
,
Xianzhu
,
W.
, and
Zhansheng
,
L.
,
2015
, “
Unsteady Simulation and Analysis for Hump Characteristics of a Pump Turbine Model
,”
Renewable Energy
,
77
, pp.
32
42
.10.1016/j.renene.2014.12.004
9.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Wei
,
X.
, and
Qin
,
D.
,
2017
, “
Numerical Simulation of Hysteresis Characteristic in the Hump Region of a Pump-Turbine Model
,”
Renewable Energy
, 115, pp. 433–447.10.1016/j.renene.2017.08.081
10.
Li
,
D.
,
Wang
,
H.
,
Li
,
Z.
,
Nielsen
,
T. K.
,
Goyal
,
R.
,
Wei
,
X.
, and
Qin
,
D.
,
2018
, “
Transient Characteristics During the Closure of Guide Vanes in a Pump-Turbine in Pump Mode
,”
Renewable Energy
,
118
, pp.
973
983
.10.1016/j.renene.2017.10.088
11.
Ma
,
P.
,
Wang
,
J.
, and
Wang
,
H.
,
2018
, “
Investigation of Performances and Flow Characteristics of Two Bi-Directional Pumps With Different Airfoil Blades
,”
Sci. China (Technol. Sci.)
,
61
(
10
), pp.
1588
1599
.10.1007/s11431-017-9195-x
12.
Zhang
,
Y.
,
Li
,
C.
,
Xu
,
Y.
,
Tang
,
Q.
,
Zheng
,
Y.
,
Liu
,
H.
, and
Fernandez-Rodriguez
,
E.
,
2019
, “
Study on Propellers Distribution and Flow Field in the Oxidation Ditch Based on Two-Phase CFD Model
,”
Water
,
11
(
12
), p.
2506
.10.3390/w11122506
13.
Bozorgi
,
A.
,
Javidpour
,
E.
,
Riasi
,
A.
, and
Nourbakhsh
,
A.
,
2013
, “
Numerical and Experimental Study of Using Axial Pump as Turbine in Pico Hydropower Plants
,”
Renewable Energy
,
53
, pp.
258
264
.10.1016/j.renene.2012.11.016
14.
Zhang
,
Y.
,
Xu
,
Y.
,
Zheng
,
Y.
,
Fernandez-Rodriguez
,
E.
,
Aoran
,
S.
,
Yang
,
C.
, and
Wang
,
J.
,
2019
, “
Multiobjective Optimization Design and Experimental Investigation on the Axial Flow Pump With Orthogonal Test Approach
,”
Complexity
, p.
1467565
.10.1155/2019/1467565
15.
Ruofu
,
X.
,
Zhengwei
,
W.
, and
Yongyao
,
L.
,
2007
, “
Dynamic Stress Analysis of Francis Turbine With Partial Load
,”
J. Hydroelectr. Eng.
, 35(5), pp.
572
577
.
16.
Campbell
,
R. L.
, and
Paterson
,
E. G.
,
2011
, “
Fluid–Structure Interaction Analysis of Flexible Turbomachinery
,”
J. Fluids Struct.
,
27
(
8
), pp.
1376
1391
.10.1016/j.jfluidstructs.2011.08.010
17.
Langthjem
,
M. A.
, and
Olhoff
,
N.
,
2004
, “
A Numerical Study of Flow-Induced Noise in a Two-Dimensional Centrifugal Pump. part i. hydrodynamics
,”
J. Fluids Struct.
,
19
(
3
), pp.
349
368
.10.1016/j.jfluidstructs.2004.01.003
18.
Allison
,
T. C.
,
Lerche
,
A. H.
, and
Moore
,
J. J.
,
2011
, “
Experimental Validation of Empirical Methods for Dynamic Stress Prediction in Turbomachinery Blades
,”
ASME
Paper No. GT2011-45901. 10.1115/GT2011-45901
19.
Kan
,
K.
,
Zheng
,
Y.
,
Fu
,
S.
,
Liu
,
H.
,
Yang
,
C.
, and
Zhang
,
X.
,
2017
, “
Dynamic Stress of Impeller Blade of Shaft Extension Tubular Pump Device Based on Bidirectional Fluid-Structure Interaction
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1561
1568
.10.1007/s12206-017-0303-1
20.
Fan
,
Y.
,
Chao
,
L.
,
Fangping
,
T.
, and
Jiren
,
Z.
,
2011
, “
Analysis on Pressure Fluctuation of Interior Flow in Reversible Pumping System for Irrigation and Drainage
,”
J. Drain. Irrig. Mach. Eng.
,
29
(
4
), pp.
316
321
.10.3969/j.issn.1674-8530.2011.04.009
21.
Ma
,
P.
,
Wang
,
J.
, and
Li
,
H.
,
2014
, “
Numerical Analysis of Pressure Pulsation for a Bidirectional Pump Under Positive and Reverse Operation
,”
Adv. Mech. Eng.
,
2014
(
6
), pp.
1
14
.10.1155/2014/730280
22.
Rui
,
X.
,
Yun
,
L.
, and
Dezhong
,
W.
,
2018
, “
Effects of Rotating Speed on the Unsteady Pressure Pulsation of Reactor Coolant Pumps With Steam-Generator Simulator
,”
Nucl. Eng. Des.
,
333
, pp.
25
44
.10.1016/j.nucengdes.2018.03.021
23.
Schmucker
,
H.
,
Flemming
,
F.
, and
Coulson
,
S.
,
2010
, “
Two-Way Coupled Fluid Structure Interaction Simulation of a Propeller Turbine
,”
Int. J. Fluid Machinery Syst.
, 3(4), pp.
342
351
.https://iopscience.iop.org/article/10.1088/1755-1315/12/1/012011
24.
Gonzalez
,
J.
, and
Santolaria
,
C.
,
2006
, “
Unsteady Flow Structure and Global Variables in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
5
), p.
937
.10.1115/1.2234782
25.
Courant
,
R.
,
Friedrichs
,
K. O.
, and
Lewy
,
H.
,
1928
, “
Uber Die Partiellen di Erenzen-Gleichungen Der Mathematisches Physic
,”
Math. Annalen
,
100
(
1
), pp.
32
74
.10.1007/BF01448839
26.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Develop.
,
11
(
2
), pp.
215
234
.10.1147/rd.112.0215
You do not currently have access to this content.