Abstract

Transverse injection at sonic speed from a rectangular slot into a supersonic crossflow is numerically explored with an indigenously developed parallel three-dimensional (3D) Reynold-averaged Navier–Stokes (RANS) solver for unstructured grids. The RANS models used for turbulence closure are the one-equation Spalart–Allmaras (SA) model and the two-equation shear stress transport (SST) model. For each model, the influence of compressibility corrections is assessed. Due to the presence of shock-turbulent boundary layer interaction (STBLI) in the flow, various STBLI corrections are assessed for both the models. Most of the simulations are two-dimensional (2D), but three-dimensional simulations are also performed to investigate the mismatch between the experimental dataset and the numerical results. The SA model is less sensitive to STBLI corrections, but some improvement in its prediction of the separation distance is found with the compressibility corrections. The SST model results are insensitive to the compressibility corrections, but the STBLI correction improves its results. Improved agreement with the experimental dataset is found when simulations are done in 3D, suggesting that the experiments were not so close to 2D as previously believed.

References

References
1.
Srinivasan
,
R.
, and
Bowersox
,
R.
,
2005
, “
Assessment of RANS and DES Turbulence Models for Supersonic Jet Interaction Flows
,”
AIAA
. Paper No. 2005-49910.2514/6.2005-499
2.
Won
,
S.-H.
,
Jeung
,
I.-S.
,
Parent
,
B.
, and
Choi
,
J.-Y.
,
2010
, “
Numerical Investigation of Transverse Hydrogen Jet Into Supersonic Crossflow Using Detached-Eddy Simulation
,”
AIAA J.
,
48
(
6
), pp.
1047
1058
.10.2514/1.41165
3.
Kawai
,
S.
, and
Lele
,
S. K.
,
2010
, “
Large-Eddy Simulation of Jet Mixing in Supersonic Crossflows
,”
AIAA J.
,
48
(
9
), pp.
2063
2083
.10.2514/1.J050282
4.
Peterson
,
D. M.
, and
Candler
,
G. V.
,
2010
, “
Hybrid Reynolds-Averaged and Large-Eddy Simulation of Normal Injection Into a Supersonic Crossflow
,”
J. Propul. Power
,
26
(
3
), pp.
533
544
.10.2514/1.46810
5.
Thornber
,
B.
, and
Drikakis
,
D.
,
2007
, “
Large-Eddy Simulation of Shock-Wave-Induced Turbulent Mixing
,”
ASME J. Fluids Eng.
,
129
(
12
), pp.
1504
1513
.10.1115/1.2801367
6.
Chakraborty
,
D.
,
Roychowdhury
,
A.
,
Ashok
,
V.
, and
Kumar
,
P.
,
2003
, “
Numerical Investigation of Staged Transverse Sonic Injection in Mach 2 Stream in Confined Environment
,”
Aeronaut. J.
,
107
(
1078
), pp.
719
729
.10.1017/S0001924000013476
7.
Aso
,
S.
,
Okuyama
,
S.
,
Ando
,
Y.
, and
Fujimori
,
T.
,
1993
, “
Two-Dimensional and Three-Dimensional Mixing Flow Fields in Supersonic Flow Induced by Injected Secondary Flows Through Traverse Slot and Circular Nozzle
,”
AIAA
Paper No. 1993-489.10.2514/6.1993-489
8.
Huang
,
W.
, and
Yan
,
L.
,
2013
, “
Progress in Research on Mixing Techniques for Transverse Injection Flow Fields in Supersonic Crossflows
,”
J. Zhejiang Univ. Sci. A
,
14
(
8
), pp.
554
564
.10.1631/jzus.A1300096
9.
Huang
,
W.
,
2016
, “
Transverse Jet in Supersonic Crossflows
,”
Aerosp. Sci. Technol.
,
50
, pp.
183
195
.10.1016/j.ast.2016.01.001
10.
Huang
,
W.
,
2018
, “
Mixing Enhancement Strategies and Their Mechanisms in Supersonic Flows: A Brief Review
,”
Acta Astronaut.
,
145
, pp.
492
500
.10.1016/j.actaastro.2018.02.022
11.
Rizetta
,
D. P.
,
1992
, “
Numerical Simulation of Slot Injection Into a Turbulent Supersonic Stream
,”
AIAA J.
,
30
(
10
), pp.
2434
2439
.10.2514/3.11244
12.
Chenault
,
C. F.
, and
Beran
,
P. S.
,
1998
, “
K-Epsilon and Reynolds Stress Turbulence Model Comparisons for Two-Dimensional Injection Flows
,”
AIAA J.
,
36
(
8
), pp.
1401
1412
.10.2514/2.561
13.
Sriram
,
A.
, and
Mathew
,
J.
,
2006
, “
Improved Prediction of Plane Transverse Tets in Supersonic Crossflows
,”
AIAA J.
,
44
(
2
), pp.
405
408
.10.2514/1.17114
14.
Huang
,
W.
,
Liu
,
W.-D.
,
Li
,
S.-B.
,
Xia
,
Z.-X.
,
Liu
,
J.
, and
Wang
,
Z.-G.
,
2012
, “
Influences of the Turbulence Model and the Slot Width on the Transverse Slot Injection Flow Field in Supersonic Flows
,”
Acta Astronaut.
,
73
, pp.
1
9
.10.1016/j.actaastro.2011.12.003
15.
Yan
,
L.
,
Huang
,
W.
,
Li
,
H.
, and
Zhang
,
T.-T.
,
2016
, “
Numerical Investigation and Optimization on Mixing Enhancement Factors in Supersonic Jet-to-Crossflow Flow Fields
,”
Acta Astronaut.
,
127
, pp.
321
325
.10.1016/j.actaastro.2016.06.011
16.
Desikan
,
S.
,
Saravanan
,
R.
,
Subramanian
,
S.
,
Sivararamakrishnan
,
A.
, and
Pandian
,
S.
,
2015
, “
Investigation of Supersonic Jet Interaction With Hypersonic Cross Flow
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101101
.10.1115/1.4030393
17.
Hariharan
,
A. R.
, and
Babu
,
V.
,
2014
, “
Transverse Injection Into a Supersonic Cross Flow Through a Circular Injector With Chevrons
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021204
.10.1115/1.4026018
18.
Kumar
,
S. A.
, and
Rathakrishnan
,
E.
,
2017
, “
Nozzle Aspect Ratio Effect on Supersonic Elliptic Jet Mixing
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101103
.10.1115/1.4036823
19.
Huang
,
W.
,
2014
, “
Design Exploration of Three-Dimensional Transverse Jet in a Supersonic Crossflow Based on Data Mining and Multi-Objective Design Optimization Approaches
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
3914
3925
.10.1016/j.ijhydene.2013.12.129
20.
Huang
,
W.
,
Li
,
L.-Q.
,
Chen
,
X.-Q.
, and
Yan
,
L.
,
2017
, “
Parametric Effect on the Flow and Mixing Properties of Transverse Gaseous Injection Flow Fields With Streamwise Slot: A Numerical Study
,”
Int. J. Hydrogen Energy
,
42
(
2
), pp.
1252
1263
.10.1016/j.ijhydene.2016.09.028
21.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-439.10.2514/6.1992-439
22.
Deck
,
S.
,
Duveau
,
P.
,
d'Espiney
,
P.
, and
Guillen
,
P.
,
2002
, “
Development and Application of Spalart–Allmaras One Equation Turbulence Model to Three-Dimensional Supersonic Complex Configurations
,”
Aerosp. Sci. Technol.
,
6
(
3
), pp.
171
183
.10.1016/S1270-9638(02)01148-3
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
24.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
25.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Proceedings of Ninth Symposium on Turbulent Shear Flows
, Vol.
1
, Kyoto, Japan, Aug. 13–16, pp.
1
6
.
26.
Chung
,
K.-M.
,
2001
, “
Investigation on Turbulent Expansion-Corner Flow With Shock Impingement
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
139
144
.10.1115/1.1343084
27.
Sinha
,
K.
,
Mahesh
,
K.
, and
Candler
,
G. V.
,
2003
, “
Modeling Shock Unsteadiness in Shock/Turbulence Interaction
,”
Phys. Fluids
,
15
(
8
), pp.
2290
2297
.10.1063/1.1588306
28.
Pathak
,
U.
,
Roy
,
S.
, and
Sinha
,
K.
,
2018
, “
A Phenomenological Model for Turbulent Heat Flux in High-Speed Flows With Shock-Induced Flow Separation
,”
ASME J. Fluids Eng.
,
140
(
5
), p.
051203
.10.1115/1.4038760
29.
Sinha
,
K.
,
Mahesh
,
K.
, and
Candler
,
G. V.
,
2005
, “
Modeling the Effect of Shock Unsteadiness in Shock/Turbulent Boundary-Layer Interactions
,”
AIAA J.
,
43
(
3
), pp.
586
594
.10.2514/1.8611
30.
Sharma
,
V.
,
Assam
,
A.
, and
Eswaran
,
V.
,
2016
, “
Development of All Speed Three Dimensional Computational Fluid Dynamics Solver for Unstructured Grids
,”
Sixth International and 43rd National Conference on Fluid Mechanics and Fluid Power
(
FMFP
), Allahabad, India, Dec. 15–17, pp.
15
17
.https://www.researchgate.net/publication/324965713_DEVELOPMENT_OF_ALL_SPEED_THREE_DIMENSIONAL_COMPUTATIONAL_FLUID_DYNAMICS_SOLVER_FOR_UNSTRUCTURED_GRIDS
31.
Weiss
,
J. M.
, and
Smith
,
W. A.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
(
11
), pp.
2050
2057
.10.2514/3.12946
32.
White
,
F. M.
, and
Corfield
,
I.
,
2006
,
Viscous Fluid Flow
, Vol.
3
,
McGraw-Hill
,
New York
, pp.
67
73
.
33.
Weiss
,
J. M.
,
Maruszewski
,
J. P.
, and
Smith
,
W. A.
,
1999
, “
Implicit Solution of Preconditioned Navier-Stokes Equations Using Algebraic Multigrid
,”
AIAA J.
,
37
(
1
), pp.
29
36
.10.2514/2.689
34.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
35.
Venkatakrishnan
,
V.
,
1993
, “
On the Accuracy of Limiters and Convergence to Steady State Solutions
,”
AIAA
Paper No. 1993-880.10.2514/6.1993-880
36.
Venkatakrishnan
,
V.
,
1995
, “
Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids With Limiters
,”
J. Comput. Phys.
,
118
(
1
), pp.
120
130
.10.1006/jcph.1995.1084
37.
Lynn
,
J. F.
,
1995
, “
Multigrid Solution of the Euler Equations With Local Preconditioning
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
38.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
, Chap. 6,
Butterworth-Heinemann
,
Oxford
, UK, pp.
173
174
.
39.
Sarkar
,
S.
,
Erlebacher
,
G.
,
Hussaini
,
M. Y.
, and
Kreiss
,
H. O.
,
1991
, “
The Analysis and Modelling of Dilatational Terms in Compressible Turbulence
,”
J. Fluid Mech.
,
227
, pp.
473
493
.10.1017/S0022112091000204
40.
Paciorri
,
R.
, and
Sabetta
,
F.
,
2003
, “
Compressibility Correction for the Spalart-Allmaras Model in Free-Shear Flows
,”
J. Spacecr. Rockets
,
40
(
3
), pp.
326
331
.10.2514/2.3967
41.
Sarkar
,
S.
, and
Lakshmanan
,
B.
,
1991
, “
Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer
,”
AIAA J.
,
29
(
5
), pp.
743
749
.10.2514/3.10649
42.
Sarkar
,
S.
,
1992
, “
The Pressure–Dilatation Correlation in Compressible Flows
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
12
), pp.
2674
2682
.10.1063/1.858454
43.
Wilcox
,
D. C.
,
1992
, “
Dilatation-Dissipation Corrections for Advanced Turbulence Models
,”
AIAA J.
,
30
(
11
), pp.
2639
2646
.10.2514/3.11279
44.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
45.
Carlson
,
J.
,
1998
, “
Prediction of Very High Reynolds Number Compressible Skin Friction
,”
AIAA
Paper No. 1998-2880.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040090508.pdf
46.
Schoenherr
,
K. E.
,
1932
, “
Resistance of Flat Surfaces Moving Through a Fluid
,”
Trans. Soc. Nav. Archit. Mar. Eng.
,
40
, pp.
279
313
.
47.
Coles
,
D.
,
1956
, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
1
(
2
), pp.
191
226
.10.1017/S0022112056000135
48.
White
,
F. M.
, and
Corfield
,
I.
,
2006
,
Viscous Fluid Flow
, Vol.
3
,
McGraw-Hill
,
New York
, p.
496
.
49.
White
,
F. M.
, and
Corfield
,
I.
,
2006
,
Viscous Fluid Flow
, Vol.
3
,
McGraw-Hill
,
New York
, p.
548
.
50.
Sutherland
,
W.
,
1893
, “
The Viscosity of Gases and Molecular Force
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
36
(
223
), pp.
507
531
.10.1080/14786449308620508
51.
Sriram
,
A.
, and
Mathew
,
J.
,
2004
, “
Numerical Prediction of Two-Dimensional Transverse Injection Flows
,”
AIAA
Paper No. 2004-1099.10.2514/6.2004-1099
52.
Clark
,
S.
, and
Chan
,
S.
,
1992
, “
Numerical Investigation of a Transverse Jet for Supersonic Aerodynamic Control
,”
AIAA
Paper No. 1992-639.10.2514/6.1992-639
You do not currently have access to this content.