Abstract

The eddy-preserving limiter has been demonstrated to outperform the conventional van Albada limiter for monotone upstream-centered schemes for conservation laws (MUSCL) for vortical flows. It reduces the dissipation by inactivating the conventional van Albada limiter in the interpolation of velocity components on the swirl plane of the vortex. In this work, we extend the limiter for the interpolation of pressure since a minimum pressure often exists along the axis of a free vortex. Three-dimensional vortex advection cases are employed to demonstrate the effects of the novel scheme. An extended eddy-preserving limiter scheme has been demonstrated to further improve the preservation of the pressure extrema. Finally, the scheme is applied to flow through a draft tube and the numerical results are compared against experimental data.

References

References
1.
Löhner
,
R.
,
2009
, “
On Limiters for Minimal Vorticity Dissipation
,”
AIAA Paper No. 2009-135
.10.2514/6.2009-135
2.
Steinhoff
,
J.
,
1994
,
Vorticity Confinement: A New Technique for Computing Vortex Dominated Flows
,
Wiley, Hoboken, NJ
, pp.
235
263
.
3.
Mohamed
,
K.
,
Nadarajah
,
S.
, and
Paraschivoiu
,
M.
,
2012
, “
Eddy-Preserving Limiter for Unsteady Subsonic Flows
,”
AIAA J.
,
50
(
2
), pp.
429
446
.10.2514/1.J051200
4.
Dörfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2012
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery: Engineer's Guidebook for Planning, Design and Troubleshooting
,
Springer Science & Business Media
,
London, UK
.
5.
Sick
,
M.
,
Doerfler
,
P.
,
Sallaberger
,
M.
,
Lohmberg
,
A.
, and
Casey
,
M.
,
2002
, “
CFD Simulation of the Draft Tube Vortex
,”
Proceedings of 21st IAHR Symposium Hydraulic Machinery and Systems
,
Lausanne, Switzerland
, Sept. 9–12, pp.
1
9
.
6.
Ruprecht
,
A.
,
Helmrich
,
T.
,
Aschenbrenner
,
T.
, and
Scherer
,
T.
,
2002
, “
Simulation of Vortex Rope in a Turbine Draft Tube
,”
Proceedings of 22nd IAHR Symposium on Hydraulic Machinery and Systems
,
Stockholm, Sweden
, June 29–July 2, pp.
9
12
.
7.
Stein
,
P.
,
Sick
,
M.
,
Dörfler
,
P.
,
White
,
P.
, and
Braune
,
A.
,
2006
, “
Numerical Simulation of the Cavitating Draft Tube Vortex in a Francis Turbine
,”
Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems
,
Yokohama, Japan
, Oct. 17–21, p.
228
.
8.
Jošt
,
D.
, and
Lipej
,
A.
,
2009
, “
Numerical Prediction of the Vortex Rope in the Draft Tube
,”
Proceedings of the Third IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
,
Brno, Czech Republic
, Oct. 14–16, pp.
75
85
.
9.
Jošt
,
D.
, and
Lipej
,
A.
,
2011
, “
Numerical Prediction of Non-Cavitating and Cavitating Vortex Rope in a Francis Turbine Draft Tube
,”
J. Mech. Eng.
,
57
(
6
), pp.
445
456
.10.5545/sv-jme.2010.068
10.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2012
, “
Simulation of Flow in a Simplified Draft Tube: Turbulence Closure Considerations
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
2
), p.
022020
.10.1088/1755-1315/15/2/022020
11.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2014
, “
Flow in the Simplified Draft Tube of a Francis Turbine Operating at Partial Load—Part I: Simulation of the Vortex Rope
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061010
.10.1115/1.4026817
12.
Krappel
,
T.
,
Ruprecht
,
A.
,
Riedelbauch
,
S.
,
Jester-Zuerker
,
R.
, and
Jung
,
A.
,
2014
, “
Investigation of Francis Turbine Part Load Instabilities Using Flow Simulations With a Hybrid RANS-LES Turbulence Model
,”
IOP Conf. Ser.: Earth Environ. Sci.
, 22(3), p.
032001
.10.1088/1755-1315/22/3/032001
13.
Skotak
,
A.
,
2000
, “
Of the Helical Vortex in the Draft Tube Turbine Modeling
,”
IAHR Symposium
,
Charlotte, NC
, Aug. 6–9.
14.
Guo
,
Y.
,
Kato
,
C.
, and
Miyagawa
,
K.
,
2006
, “
Large-Eddy Simulation of Non-Cavitating and Cavitating Flows in the Draft Tube of a Francis Turbine
,”
Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems
,
Yokohama, Japan
, Oct. 17–21, p.
95
.
15.
Magnan
,
R.
,
Cupillard
,
S.
,
Gauthier
,
G.
,
Giroux
,
A.
,
Page
,
M.
, and Deschênes, C.,
2014
, “
Challenges in Assessing the Grid Sensitivity of Hydro-Turbine CFD Simulations
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), p.
022010
.10.1088/1755-1315/22/2/022010
16.
Devals
,
C.
,
Vu
,
T.
,
Zhang
,
Y.
,
Dompierre
,
J.
, and
Guibault
,
F.
,
2016
, “
Mesh Convergence Study for Hydraulic Turbine Draft-Tube
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
(
8
), p.
082021
.10.1088/1755-1315/49/8/082021
17.
Krappel
,
T.
,
Riedelbauch
,
S.
,
Jester-Zuerker
,
R.
,
Jung
,
A.
,
Flurl
,
B.
,
Unger
,
F.
, and
Galpin
,
P.
,
2016
, “
Turbulence Resolving Flow Simulations of a Francis Turbine in Part Load Using Highly Parallel CFD Simulations
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
(
6
), p.
062014
.10.1088/1755-1315/49/6/062014
18.
Venkatakrishnan
,
V.
,
1993
, “
On the Accuracy of Limiters and Convergence to Steady State Solutions
,”
AIAA Paper No. 93-0880
. 10.2514/6.93-0880
19.
Huynh
,
H. T.
,
1995
, “
Accurate Upwind Methods for the Euler Equations
,”
SIAM J. Numer. Anal.
,
32
(
5
), pp.
1565
1619
.10.1137/0732071
20.
Sekora
,
M.
, and
Colella
,
P.
,
2009
, “
Extremum-Preserving Limiters for MUSCL and PPM
,” preprint arXiv:0903.4200.
21.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.10.1017/S0022112005004726
22.
Yang
,
L.
,
Jiang
,
Y.
, and
Nadarajah
,
S.
,
2019
, “
Numerical Simulation of a Bulb Turbine With an Eddy-Preserving Limiter Scheme
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
(
7
), p.
072010
.10.1088/1755-1315/240/7/072010
23.
Walther
,
B.
,
2014
, “
Adjoint-Based Constrained Aerodynamic Shape Optimization for Multistage Turbomachines
,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
25.
van Albada
,
G.
, van
Leer
,
B.
, and
Roberts
,
W.
,
1982
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
Astron. Astrophys.
,
108
, p.
76
. https://openaccess.leidenuniv.nl/bitstream/handle/1887/6764/A%26A_108_76_84.pdf?sequence=1
26.
Yee
,
H. C.
,
Sandham
,
N. D.
, and
Djomehri
,
M. J.
,
1999
, “
Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters
,”
J. Comput. Phys.
,
150
(
1
), pp.
199
238
.10.1006/jcph.1998.6177
27.
Guénette
,
V.
,
Houde
,
S.
,
Ciocan
,
G.
,
Dumas
,
G.
,
Huang
,
J.
, and
Deschênes
,
C.
,
2012
, “
Numerical Prediction of a Bulb Turbine Performance Hill Chart Through Rans Simulations
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
3
), p.
032007
.10.1088/1755-1315/15/3/032007
28.
Houde
,
S.
,
Carrier
,
A.
,
Buron
,
J.
, and
Deschênes
,
C.
,
2014
, “
Numerical Analysis of a Measured Efficiency Hysteresis on a Bulb Turbine Model
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), p.
022009
.10.1088/1755-1315/22/2/022009
29.
Lemay
,
S.
,
Aeschlimann
,
V.
,
Fraser
,
R.
,
Ciocan
,
G.
, and
Deschênes
,
C.
,
2015
, “
Velocity Field Investigation Inside a Bulb Turbine Runner Using Endoscopic PIV Measurements
,”
Exp. Fluids
,
56
(
6
), p.
120
.10.1007/s00348-015-1991-x
30.
Duquesne
,
P.
,
Maciel
,
Y.
, and
Deschênes
,
C.
,
2016
, “
Investigation of Flow Separation in a Diffuser of a Bulb Turbine
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011102
.10.1115/1.4031254
31.
Buron
,
J.
,
Houde
,
S.
, and
Deschênes
,
C.
,
2018
, “
Investigation of the BulbT Conical Diffuser Flow Dynamics With TR-PIV and Pressure Measurements
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
(
2
), p.
022037
.10.1088/1755-1315/240/2/022037
32.
Vuillemard
,
J.
,
Aeschlimann
,
V.
,
Fraser
,
R.
,
Lemay
,
S.
, and
Deschênes
,
C.
,
2014
, “
Experimental Investigation of the Draft Tube Inlet Flow of a Bulb Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032010
.10.1088/1755-1315/22/3/032010
You do not currently have access to this content.