Abstract

In this study, upward air–water two-phase flow tests were carried out in a 3 cm diameter pipe under atmospheric pressure, and over 3000 data points were collected from a wide range of superficial gas and liquid velocities (⟨jg⟩ ≈ 0.02–30 m/s and ⟨jf⟩ ≈ 0.02–2 m/s) for the investigation of flow regime identification. The probability density function (PDF) of transient void fraction signals and its full-width at half-maximum (FWHM) were obtained and used for analysis and data classification. Considering the features of PDF profiles, the flow conditions can be classified into four regions, which show a fair agreement with the existing flow regime maps in general trends. Furthermore, by examining the FWHM distributions, two more regions with high-FWHM (HF) values were identified as the transitions of higher-flow bubbly-to-slug and slug-to-churn flows as well as most portion of churn flow, and a valley region next to the HF regions can express the transition of churn-to-annular flows. Overall, six groups of flow conditions can be classified based on the present methodology, and each group can be corresponding to specific flow regimes or transition regions. This study can provide a simple and efficient way for flow regime identification.

References

1.
Mishima
,
K.
, and
Ishii
,
M.
,
1983
, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
723
737
.10.1016/0017-9310(84)90142-X
2.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
New York
, pp.
3
9
.
3.
Ishii
,
M.
, and
Jarlais
,
G. D.
,
1987
, “
Flow Visualization Study of Inverted Annular Flow of Post Dryout Heat Transfer Region
,”
Nucl. Eng. Des.
,
99
, pp.
187
199
.10.1016/0029-5493(87)90120-8
4.
Huo
,
X.
,
Chen
,
L.
,
Tian
,
Y. S.
, and
Karayiannis
,
T. G.
,
2004
, “
Flow Boiling and Flow Regimes in Small Diameter Tubes
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1225
1239
.10.1016/j.applthermaleng.2003.11.027
5.
Zhou
,
Y.
,
Chen
,
F.
, and
Sun
,
B.
,
2008
, “
Identification Method of Gas-Liquid Two-Phase Flow Regime Based on Image Multi-Feature Fusion and Support Vector Machine
,”
Chin. J. Chem. Eng.
,
16
(
6
), pp.
832
840
.10.1016/S1004-9541(09)60002-1
6.
Ghanbarzadeh
,
S.
,
Hanafizadeh
,
P.
, and
Saidi
,
M. H.
,
2012
, “
Intelligent Image-Based Gas-Liquid Two-Phase Flow Regime Recognition
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061302
.10.1115/1.4006613
7.
Tsoukalas
,
L. H.
,
Ishii
,
M.
, and
Mi
,
Y.
,
1997
, “
A Neurofuzzy Methodology for Impedance-Based Multiphase Flow Identification
,”
Eng. Appl. Artif. Intell.
,
10
(
6
), pp.
545
555
.10.1016/S0952-1976(97)00037-7
8.
Lee
,
J. Y.
,
Ishii
,
M.
, and
Kim
,
N. S.
,
2008
, “
Instantaneous and Objective Flow Regime Identification Method for the Vertical Upward and Downward Co-Current Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3442
3459
.10.1016/j.ijheatmasstransfer.2007.10.037
9.
Paranjape
,
S.
,
Chen
,
S. W.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2011
, “
Flow Regime Identification Under Adiabatic Upward Two-Phase Flow in a Vertical Rod Bundle Geometry
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091302
.10.1115/1.4004836
10.
Chen
,
S. W.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Mori
,
M.
, and
Watanabe
,
F.
,
2014
, “
Experimental Study of Adiabatic Two-Phase Flow in an Annular Channel Under Low-Frequency Vibration
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
032501
.10.1115/1.4025726
11.
Schlegel
,
J. P.
,
Sawant
,
P.
,
Paranjape
,
S.
,
Ozar
,
B.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2009
, “
Void Fraction and Flow Regime in Adiabatic Upward Two-Phase Flow in Large Diameter Pipes
,”
Nucl. Eng. Des.
,
238
, pp.
2864
2874
.10.1016/j.nucengdes.2009.08.004
12.
Schlegel
,
J. P.
,
Macke
,
C. J.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2013
, “
Modified Distribution Parameter for Churn-Turbulent Flows in Large Diameter Channels
,”
Nucl. Eng. Des.
,
263
, pp.
138
150
.10.1016/j.nucengdes.2013.04.008
13.
Julia
,
J. E.
,
Ozar
,
B.
,
Dixit
,
A.
,
Jeong
,
J. J.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2009
, “
Axial Development of Flow Regime in Adiabatic Upward Two-Phase Flow in a Vertical Annulus
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021302
.10.1115/1.3059701
14.
Hernandez
,
L.
,
Julia
,
J. E.
,
Ozar
,
B.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2011
, “
Flow Regime Identification in Boiling Two-Phase Flow in a Vertical Annulus
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091304
.10.1115/1.4004838
15.
Julia
,
J. E.
,
Liu
,
Y.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2013
, “
Local Flow Regime Analysis in Vertical Co-Current Downward Two-Phase Flow
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
345
355
.10.1016/j.expthermflusci.2012.07.006
16.
Schlegel
,
J. P.
,
Miwa
,
S.
,
Chen
,
S. W.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2012
, “
Experimental Study of Two-Phase Flow Structure in Large Diameter Pipes
,”
Exp. Therm. Fluid Sci.
,
41
, pp.
12
22
.10.1016/j.expthermflusci.2012.01.034
17.
Costigan
,
G.
, and
Whalley
,
P. B.
,
1997
, “
Slug Flow Regime Identification From Dynamic Void Fraction Measurements in Vertical Air-Water Flows
,”
Int. J. Multiphase Flow
,
23
(
2
), pp.
263
282
.10.1016/S0301-9322(96)00050-X
18.
Hu
,
H. L.
,
Dong
,
J.
,
Zhang
,
J.
,
Cheng
,
Y. J.
, and
Xu
,
T. M.
,
2011
, “
Identification of Gas/Solid Two-Phase Flow Regimes Using Electrostatic Sensors and Neural-Network Techniques
,”
Flow Meas. Instrum.
,
22
(
5
), pp.
482
487
.10.1016/j.flowmeasinst.2011.07.004
19.
Sekoguchi
,
K.
,
Takeishi
,
M.
,
Cognet
,
G.
,
Ishimatsu
,
T.
, and
Yahiro
,
K.
,
1987
, “
Patterns of Liquid Lump Behaviors in Upward Gas-Liquid Two-Phase Flow
,”
Trans. Jpn. Soc. Mech. Eng.
,
53
, pp.
2807
2813
.10.1299/kikaib.53.2807
20.
Sekoguchi
,
K.
, and
Takeishi
,
M.
,
1989
, “
Interfacial Structures in Upward Huge Wave Flow and Annular Flow Regimes
,”
Int. J. Multiphase Flow
,
15
(
3
), pp.
295
305
.10.1016/0301-9322(89)90002-5
21.
Banasiak
,
R.
,
Wajman
,
R.
,
Jaworski
,
T.
,
Fiderek
,
P.
,
Fidos
,
H.
,
Nowakowski
,
J.
, and
Sankowski
,
D.
,
2014
, “
Study on Two-Phase Flow Regime Visualization and Identification Using 3D Electrical Capacitance Tomography and Fuzzy-Logic Classification
,”
Int. J. Multiphase Flow
,
58
, pp.
1
14
.10.1016/j.ijmultiphaseflow.2013.07.003
22.
Abdulkadir
,
M.
,
Hernandez-Perez
,
V.
,
Lowndes
,
I. S.
,
Azzopardi
,
B. J.
, and
Dzomeku
,
S.
,
2014
, “
Experimental Study of the Hydrodynamic Behavior of Slug Flow in a Vertical Riser
,”
Chem. Eng. Sci.
,
106
, pp.
60
75
.10.1016/j.ces.2013.11.021
23.
Abdulkadir
,
M.
,
Hernandez-Perez
,
V.
,
Kwatia
,
C. A.
, and
Azzopardi
,
B. J.
,
2018
, “
Interrogating Flow Development and Phase Distribution in Vertical and Horizontal Pipes Using Advanced Instrumentation
,”
Chem. Eng. Sci.
,
186
, pp.
152
167
.10.1016/j.ces.2018.04.039
24.
Jones
,
O. C.
, Jr.
, and
Zuber
,
N.
,
1975
, “
The Interrelation Between Void Fraction Fluctuations and Flow Pattern in Two-Phase Flow
,”
Int. J. Multiphase Flow
,
2
(
3
), pp.
273
306
.10.1016/0301-9322(75)90015-4
25.
Pan
,
L. M.
,
Zhang
,
M.
,
Ju
,
P.
,
He
,
H.
, and
Ishii
,
M.
,
2016
, “
Vertical Co-Current Two-Phase Flow Regime Identification Using Fuzzy C-Means Clustering Algorithm and Relief F Attribute Weighting Technique
,”
Int. J. Heat Mass Transfer
,
95
, pp.
393
404
.10.1016/j.ijheatmasstransfer.2015.11.081
26.
Chen
,
S. W.
,
Lin
,
M. S.
,
Kuo
,
F. J.
,
Chai
,
M. L.
,
Liu
,
S. Y.
,
Lee
,
J. D.
, and
Pei
,
B. S.
,
2017
, “
Experimental Investigation and Identification of the Transition Boundary of Churn and Annular Flows Using Multi-Range Differential Pressure and Conductivity Signals
,”
Appl. Therm. Eng.
,
114
, pp.
1275
1286
.10.1016/j.applthermaleng.2016.09.139
27.
Chen
,
S. W.
,
Liu
,
Y.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Yoshida
,
Y.
,
Kinoshita
,
I.
,
Murase
,
M.
, and
Mishima
,
K.
,
2012
, “
Experimental Study of Air-Water Two-Phase Flow in an 8 × 8 Rod Bundle Under Pool Condition for One-Dimensional Drift-Flux Analysis
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
168
181
.10.1016/j.ijheatfluidflow.2011.09.012
28.
Chen
,
S. W.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Mori
,
M.
, and
Watanabe
,
F.
,
2017
, “
Experimental Investigation of Horizontal Forced-Vibration Effect on Air-Water Two-Phase Flow
,”
Int. J. Heat Fluid Flow
,
65
, pp.
33
46
.10.1016/j.ijheatfluidflow.2017.03.004
29.
Zuber
,
N.
, and
Findlay
,
J.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow Systems
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
453
468
.10.1115/1.3689137
30.
Ishii
,
M.
,
1977
, “
One-Dimensional Drift–Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,” Argonne National Laboratory, Lemont, IL, Report No.
ANL-77-47
.10.2172/6871478
31.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modeling Flow Pattern Transitions for Steady Upward Gas–Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
3
), pp.
345
354
.10.1002/aic.690260304
You do not currently have access to this content.