Abstract

When a fluid containing erosive particles flows through two or more elbows mounted in series with short distances between them, the downstream elbows which are installed after the first elbow are exposed to erosion from a flow that is not fully developed, and therefore, the characteristics of erosive wear in the second elbow can be different than the first. In this work, the erosion magnitude and pattern in two standard successive vertical–horizontal and horizontal–vertical elbows are examined experimentally. Utilizing an ultrasonic technique (UT), erosion measurements are performed in gas–sand and gas–liquid–sand annular flows to investigate the effects of particle size and flowrates. A paint removal study is also performed to capture the erosion patterns in two elbows for different flow conditions. Using two clear elbows, a flow visualization is performed which shows the quality of phase distribution in the two elbows in series in annular and stratified flows. Measurements show the erosion in the second elbow for this geometry and these flow conditions are less than or in a few cases nearly equal to the first elbow. The location of maximum erosion for all the cases considered is around 45 and 65 deg from the inlet of the elbow in the first and second elbows, respectively. Two areas of high impact frequencies are identified in both elbows. One high-intensity particle impact region which is affected primarily by first impact of particles, and another pattern is formed due to rebounded particles from the first impact.

References

1.
Arabnejad
,
H.
,
Mansouri
,
A.
,
Shirazi
,
S. A.
, and
Mclaury
,
B. S.
,
2015
, “
Evaluation of Solid Particle Erosion Equations and Models for Oil and Gas Industry Applications
,”
SPE Annual Technical Conference and Exhibition
, Houston, TX, Sept. 28–30, pp.
1
21
.10.2118/174987-MS
2.
Parsi
,
M.
,
Najmi
,
K.
,
Najafifard
,
F.
,
Hassani
,
S.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2014
, “
A Comprehensive Review of Solid Particle Erosion Modeling for Oil and Gas Wells and Pipelines Applications
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
850
873
.10.1016/j.jngse.2014.10.001
3.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
.10.1016/j.wear.2006.12.048
4.
Okita
,
R.
,
Zhang
,
Y.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2012
, “
Experimental and Computational Investigations to Evaluate the Effects of Fluid Viscosity and Particle Size on Erosion Damage
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061301
.10.1115/1.4005683
5.
Nemitallah
,
M. A.
,
Ben-Mansour
,
R.
,
Habib
,
M. A.
,
Ahmed
,
W. H.
,
Toor
,
I. H.
,
Gasem
,
Z. M.
, and
Badr
,
H. M.
,
2014
, “
Solid Particle Erosion Downstream of an Orifice
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021302
.10.1115/1.4028283
6.
Karimi
,
S.
,
Mansouri
,
A.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2017
, “
Experimental Investigation on the Influence of Particle Size in a Submerged Slurry Jet on Erosion Rates and Patterns
,”
ASME
Paper No. FEDSM2017-69350.10.1115/FEDSM2017-69350
7.
Karimi
,
S.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2017
, “
Predicting Fine Particle Erosion Utilizing Computational Fluid Dynamics
,”
Wear
,
376–377
, pp.
1130
1137
.10.1016/j.wear.2016.11.022
8.
El-Behery
,
S. M.
,
Hamed
,
M. H.
,
Ibrahim
,
K. A.
, and
El-Kadi
,
M. A.
,
2010
, “
CFD Evaluation of Solid Particles Erosion in Curved Ducts
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071303
.10.1115/1.4001968
9.
Deng
,
T.
,
Patel
,
M.
,
Hutchings
,
I.
, and
Bradley
,
M. S. A.
,
2005
, “
Effect of Bend Orientation on Life and Puncture Point Location Due to Solid Particle Erosion of a High Concentration Flow in Pneumatic Conveyors
,”
Wear
,
258
(
1–4
), pp.
426
433
.10.1016/j.wear.2004.02.010
10.
Mazumder
,
Q. H.
,
Shirazi
,
S. A.
, and
McLaury
,
B.
,
2008
, “
Experimental Investigation of the Location of Maximum Erosive Wear Damage in Elbows
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
11303
.10.1115/1.2826426
11.
McLaury
,
B. S.
,
Shirazi
,
S. A.
,
Viswanathan
,
V.
,
Mazumder
,
Q. H.
, and
Santos
,
G.
,
2011
, “
Distribution of Sand Particles in Horizontal and Vertical Annular Multiphase Flow in Pipes and the Effects on Sand Erosion
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
23001
.10.1115/1.4004264
12.
Vieira
,
R.
,
Kesana
,
N. R.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2012
, “
Sand Erosion in Multiphase Flow for Low-Liquid Loading and Annular Conditions
,”
ASME
Paper No. IMECE2012-86425.10.1115/IMECE2012-86425
13.
Kesana
,
N. R.
,
Grubb
,
S. A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2013
, “
Ultrasonic Measurement of Multiphase Flow Erosion Patterns in a Standard Elbow
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
32905
.10.1115/1.4023331
14.
Parsi
,
M.
,
Vieira
,
R. E.
,
Kesana
,
N.
,
Mclaury
,
B. S.
, and
Shirazi
,
S. A.
,
2015
, “
Ultrasonic Measurements of Sand Particle Erosion in Gas Dominant Multiphase Churn Flow in Vertical Pipes
,”
Wear
,
328–329
, pp.
401
413
.10.1016/j.wear.2015.03.013
15.
Shirazi
,
S. A.
,
McLaury
,
B. S.
,
Shadley
,
J. R.
, and
Rybicki
,
E. F.
,
1995
, “
A Procedure to Predict Solid Particle Erosion in Elbows and Tees
,”
ASME J. Pressure Vessel Technol.
,
117
(
1
), pp.
45
52
.10.1115/1.2842089
16.
Mclaury
,
B. S.
, and
Shirazi
,
S. A.
,
2000
, “
An Alternate Method to API RP 14E for Predicting Solids Erosion in Multiphase Flow
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
115
122
.10.1115/1.1288209
17.
Shirazi
,
S. A.
,
Mclaury
,
B. S.
, and
Arabnejad
,
H.
,
2016
, “
A Semi-Mechanistic Model for Predicting Sand Erosion Threshold Velocities in Gas and Multiphase Flow Production
,” SPE Annual Technical Conference and Exhibition,
Dubai, UAE, Sept. 26–28, Paper No
.
SPE-181487-MS
.10.2118/181487-MS
18.
Zahedi
,
P.
,
Karimi
,
S.
,
Mahdavi
,
M.
,
Mclaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Parametric Analysis of Erosion in 90 Degree and Long Radius Bends
,”
ASME
Paper No. FEDSM2016-7735.10.1115/FEDSM2016-7735
19.
Edwards
,
J. K.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2001
, “
Modeling Solid Particle Erosion in Elbows and Plugged Tees
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
277
284
.10.1115/1.1413773
20.
Vieira
,
R. E.
,
Mansouri
,
A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Experimental and Computational Study of Erosion in Elbows Due to Sand Particles in Air Flow
,”
Powder Technol.
,
288
, pp.
339
353
.10.1016/j.powtec.2015.11.028
21.
Peng
,
W.
, and
Cao
,
X.
,
2016
, “
Numerical Prediction of Erosion Distributions and Solid Particle Trajectories in Elbows for Gas-Solid Flow
,”
J. Nat. Gas Sci. Eng.
,
30
, pp.
455
470
.10.1016/j.jngse.2016.02.008
22.
Solnordal
,
C. B.
,
Wong
,
C. Y.
, and
Boulanger
,
J.
,
2015
, “
An Experimental and Numerical Analysis of Erosion Caused by Sand Pneumatically Conveyed Through a Standard Pipe Elbow
,”
Wear
,
336–337
, pp.
43
57
.10.1016/j.wear.2015.04.017
23.
Asgharpour
,
A.
,
Zahedi
,
P.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2017
, “
Experimental and Numerical Study on Solid Particle Erosion in Elbows Mounted in Series
,”
ASME
Paper No. FEDSM2017-69415.10.1115/FEDSM2017-69415
24.
Dubey
,
A.
,
Smith
,
R. J. B.
, and
Vedapuri
,
D.
,
2014
, “
Erosion Prediction in Pipeline Elbow by Coupling Discrete Element Modeling (DEM) With Computational Fluid Dynamics (CFD)
,”
Corrosion
, NAEC-International,
San Antonio, TX
, Mar. 9–13, pp.
1
9
.https://www.onepetro.org/conference-paper/NACE-2014-4306
25.
Asgharpour
,
A.
,
2019
, “E/CRC,”
The University of Tulsa
,
Tulsa
, OK, Report No. EC12 F2019.
26.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
193
.10.1016/S0043-1648(97)00217-2
27.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.10.2514/3.59826
28.
Sommerfeld
,
M.
, and
Huber
,
N.
,
1999
, “
Experimental Analysis and Modelling of Particle-Wall Collisions
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1457
1489
.10.1016/S0301-9322(99)00047-6
29.
Haider
,
G.
,
Arabnejad
,
H.
,
Shirazi
,
S. A.
, and
Mclaury
,
B. S.
,
2017
, “
A Mechanistic Model for Stochastic Rebound of Solid Particles With Application to Erosion Predictions
,”
Wear
,
376–377
, pp.
615
624
.10.1016/j.wear.2017.02.015
30.
Vieira
,
R. E.
,
Kesana
,
N. R.
,
Torres
,
C. F.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2014
, “
Experimental Investigation of Horizontal Gas–Liquid Stratified and Annular Flow Using Wire-Mesh Sensor
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121301
.10.1115/1.4027799
31.
Felten
,
F. N.
,
2014
, “
Numerical Prediction of Solid Particle Erosion for Elbows Mounted in Series
,”
ASME
Paper No. FEDSM2014-21172.10.1115/FEDSM2014-21172
32.
Mazumder
,
Q. H.
,
Ahmed
,
K.
, and
Zhao
,
S.
,
2015
, “
Experimental Investigation of Solid Particle Erosion in S-Bend
,”
ASME J. Fluids Eng.
,
138
(
4
), p.
044501
.10.1115/1.4031685
33.
Lin
,
N.
,
Arabnejad
,
H.
,
Shirazi
,
S. A.
,
McLaury
,
B. S.
, and
Lan
,
H.
,
2018
, “
Experimental Study of Particle Size, Shape and Particle Flow Rate on Erosion of Stainless Steel
,”
Powder Technol.
,
336
, pp.
70
79
.10.1016/j.powtec.2018.05.039
34.
Zahedi
,
P.
,
2018
, “
Sand Erosion in Annular Flow and Low Liquid Loading Flow Conditions
,” Ph.D. dissertation,
The University of Tulsa
,
Tulsa, OK
.
You do not currently have access to this content.