Abstract

Because the pumping of samples by viscous drag forces and the use of flow-focusing for several sheath flows are widely used in microfluidic devices applications, the present investigation treats about the transport of multilayer immiscible viscoelastic fluids into a slit microchannel by electro-osmotic and pressure-driven effects. The mathematical formulation for the steady-state analysis of the flow field is based on the Poisson–Boltzmann equation and the Cauchy momentum equation. Each fluid layer has independent physical and electrical properties and is formed by a mixture of an electrolyte with a fluid that provides a viscoelastic behavior that follows the simplified Phan-Thien-Tanner (sPTT) rheological model. In the problem, the fluids are conductive and the walls of the microchannel are dielectrics, yielding electric double layers in the liquid–liquid and solid–liquid interfaces; therefore, the flow field is controlled by interfacial electrostatic conditions. The semi-analytical results are centered in the description of the velocity profiles and in the flowrate as a function of a series of dimensionless parameters arising from the mathematical modeling, where we can observe that the multilayer flow characteristics are related to the type of electrolyte solutions, since when the flow field is formed by two or more, interesting interfacial effects appear that modify the shape of velocity profiles and change the magnitude of flowrate in favor or against, depending of the positions of each fluid layer; in addition, the flow raises or diminishes by applying an external pressure gradient.

References

References
1.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
,
2006
,
Electrokinetic and Colloid Transport Phenomena
,
Wiley-Interscience
,
Hoboken, NJ
.
2.
Reuss
,
F. F.
,
1809
, “
Sur un Nouvel Effet de L'électricité Galvanique
,”
Mem. Soc. Imp. Nat. Moscou
,
2
, pp.
327
336
.
3.
Burgreen
,
D.
, and
Nakache
,
F. R.
,
1964
, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
(
5
), pp.
1084
1091
.10.1021/j100787a019
4.
Rice
,
C. L.
, and
Whitehead
,
R.
,
1965
, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
,
69
(
11
), pp.
4017
4024
.10.1021/j100895a062
5.
Hossan
,
M. R.
,
Dutta
,
D.
,
Islam
,
N.
, and
Dutta
,
P.
,
2018
, “
Review: Electric Field Driven Pumping in Microfluidic Device
,”
Electrophoresis
,
39
(
5–6
), pp.
702
731
.10.1002/elps.201700375
6.
Li
,
L.
,
Wang
,
X.
,
Pu
,
Q.
, and
Liu
,
S.
,
2019
, “
Advancement of Electroosmotic Pump in Microflow Analysis: A Review
,”
Anal. Chim. Acta
,
1060
, pp.
1
16
.10.1016/j.aca.2019.02.004
7.
Yang
,
C.
,
Ng
,
C. B.
, and
Chan
,
V.
,
2002
, “
Transient Analysis of Electroosmotic Flow in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
248
(
2
), pp.
524
527
.10.1006/jcis.2002.8219
8.
Na
,
R.
,
Jian
,
Y.
,
Chang
,
L.
,
Su
,
J.
, and
Liu
,
Q.
,
2013
, “
Transient Electro-Osmotic and Pressure Driven Flows Through a Microannulus
,”
Open J. Fluid Dyn.
,
3
(
2
), pp.
50
56
.10.4236/ojfd.2013.32007
9.
Miller
,
A.
,
Villegas
,
A.
, and
Diez
,
F. J.
,
2015
, “
Characterization of the Startup Transient Electrokinetic Flow in Rectangular Channels of Arbitrary Dimensions, Zeta Potential Distribution, and Time-Varying Pressure Gradient
,”
Electrophoresis
,
36
(
5
), pp.
692
702
.10.1002/elps.201400439
10.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
,
2008
, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
326
(
2
), pp.
503
510
.10.1016/j.jcis.2008.06.028
11.
Chen
,
C.-H.
,
2012
, “
Fully-Developed Thermal Transport in Combined Electroosmotic and Pressure Driven Flow of Power-Law Fluids in Microchannels
,”
Int. J. Heat Mass Transfer.
,
55
(
7–8
), pp.
2173
2183
.10.1016/j.ijheatmasstransfer.2011.12.022
12.
Nayak
,
A. K.
,
Haque
,
A.
, and
Weigand
,
B.
,
2018
, “
Analysis of Electroosmotic Flow and Joule Heating Effect in a Hydrophobic Channel
,”
Chem. Eng. Sci.
,
176
, pp.
165
179
.10.1016/j.ces.2017.10.014
13.
Dhinakaran
,
S.
,
Afonso
,
A. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2010
, “
Steady Viscoelastic Fluid Flow Between Parallel Plates Under Electro-Osmotic Forces: Phan-Thien-Tanner Model
,”
J. Colloid Interface Sci.
,
344
(
2
), pp.
513
520
.10.1016/j.jcis.2010.01.025
14.
Escandón
,
J.
,
Jiménez
,
E.
,
Hernández
,
C.
,
Bautista
,
O.
, and
Méndez
,
F.
,
2015
, “
Transient Electroosmotic Flow of Maxwell Fluids in a Slit Microchannel With Asymmetric Zeta Potentials
,”
Eur. J. Mech. B
,
53
, pp.
180
189
.10.1016/j.euromechflu.2015.05.001
15.
Liu
,
M.
, and
Yang
,
J.
,
2009
, “
Electrokinetic Effect of the Endothelial Glycocalyx Layer on Two-Phase Blood Flow in Small Blood Vessels
,”
Microvasc. Res.
,
78
(
1
), pp.
14
19
.10.1016/j.mvr.2009.04.002
16.
Brask
,
A.
,
Goranović
,
G.
,
Jensen
,
M. J.
, and
Bruus
,
H.
,
2005
, “
A Novel Electro-Osmotic Pump Design for Nonconducting Liquids: Theoretical Analysis of Flow Rate-Pressure Characteristics and Stability
,”
J. Micromech. Microeng.
,
15
(
4
), pp.
883
891
.10.1088/0960-1317/15/4/029
17.
Ngoma
,
G. D.
, and
Erchiqui
,
F.
,
2006
, “
Pressure Gradient and Electroosmotic Effects on Two Immiscible Fluids in a Microchannel Between Two Parallel Plates
,”
J. Micromech. Microeng.
,
16
(
1
), pp.
83
91
.10.1088/0960-1317/16/1/012
18.
Afonso
,
A. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2013
, “
Analytical Solution of Two-Fluid Electro-Osmotic Flows of Viscoelastic Fluids
,”
J. Colloid Interface Sci.
,
395
, pp.
277
286
.10.1016/j.jcis.2012.12.013
19.
Gao
,
Y.
,
Wong
,
T. N.
,
Yang
,
C.
, and
Ooi
,
K. T.
,
2005
, “
Transient Two-Liquid Electroosmotic Flow With Electric Charges at the Interface
,”
Colloid Surf. A
,
266
(
1–3
), pp.
117
128
.10.1016/j.colsurfa.2005.05.068
20.
Movahed
,
S.
,
Khani
,
S.
,
Wen
,
J. Z.
, and
Li
,
D.
,
2012
, “
Electroosmotic Flow in a Water Column Surrounded by an Immiscible Liquid
,”
J. Colloid Interface Sci.
,
372
(
1
), pp.
207
211
.10.1016/j.jcis.2012.01.044
21.
Huang
,
Y.
,
Li
,
H.
, and
Wong
,
T. N.
,
2014
, “
Two Immiscible Layers of Electro-Osmotic Driven Flow With a Layer of Conducting Non-Newtonian Fluid
,”
Int. J. Heat Mass Transfer.
,
74
, pp.
368
375
.10.1016/j.ijheatmasstransfer.2014.02.068
22.
Moghadam
,
A. J.
,
2016
, “
Two-Fluid Electrokinetic Flow in a Circular Microchannel
,”
Int. J. Eng. Trans. A
,
29
(
10
), pp.
1469
1477
.http://www.ije.ir/article_72817.html
23.
Choi
,
W.
,
Sharma
,
A.
,
Qian
,
S.
,
Lim
,
G.
, and
Joo
,
S. W.
,
2011
, “
On Steady Two-Fluid Electroosmotic Flow With Full Interfacial Electrostatics
,”
J. Colloid Interface Sci.
,
357
(
2
), pp.
521
526
.10.1016/j.jcis.2011.01.107
24.
Su
,
J.
,
Jian
,
Y.-J.
,
Chang
,
L.
, and
Li
,
Q.-S.
,
2013
, “
Transient Electro-Osmotic and Pressure Driven Flows of Two-Layer Fluids Through a Slit Microchannel
,”
Acta Mech. Sin.
,
29
(
4
), pp.
534
542
.10.1007/s10409-013-0051-0
25.
Jian
,
Y.
,
Su
,
J.
,
Chang
,
L.
,
Liu
,
Q.
, and
He
,
G.
,
2014
, “
Transient Electroosmotic Flow of General Maxwell Fluids Through a Slit Microchannel
,”
Z. Angew. Math. Phys.
,
65
(
3
), pp.
435
447
.10.1007/s00033-013-0341-1
26.
Shit
,
G. C.
,
Mondal
,
A.
,
Sinha
,
A.
, and
Kundu
,
P. K.
,
2016
, “
Two-Layer Electro-Osmotic Flow and Heat Transfer in a Hydrophobic Micro-Channel With Fluid-Solid Interfacial Slip and Zeta Potential Difference
,”
Colloid Surf. A
,
506
, pp.
535
549
.10.1016/j.colsurfa.2016.06.050
27.
Vladisavljević
,
G. T.
,
Khalid
,
N.
,
Neves
,
M. A.
,
Kuroiwa
,
T.
,
Nakajima
,
M.
,
Uemura
,
K.
,
Ichikawa
,
S.
, and
Kobayashi
,
I.
,
2013
, “
Industrial Lab-on-a-Chip: Design, Applications and Scale-Up for Drug Discovery and Delivery
,”
Adv. Drug Delivery Rev.
,
65
(
11–12
), pp.
1626
1663
.10.1016/j.addr.2013.07.017
28.
Haiwang
,
L.
,
Wong
,
T. N.
, and
Nguyen
,
N.-T.
,
2009
, “
Analytical Model of Mixed Electroosmotic/Pressure Driven Three Immiscible Fluids in a Rectangular Microchannel
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4459
4469
.10.1016/j.ijheatmasstransfer.2009.03.053
29.
Haiwang
,
L.
,
Wong
,
T. N.
, and
Nguyen
,
N.-T.
,
2010
, “
Time-Dependent Model of Mixed Electroosmotic/Pressure-Driven Three Immiscible Fluids in a Rectangular Microchannel
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
772
785
.10.1016/j.ijheatmasstransfer.2009.10.011
30.
Li
,
J.
,
Sheeran
,
P. S.
, and
Kleinstreuer
,
C.
,
2011
, “
Analysis of Multi-Layer Immiscible Fluid Flow in a Microchannel
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111202
.10.1115/1.4005134
31.
Tanner
,
R. I.
,
2000
,
Engineering Rheology
,
Oxford University Press
,
New York
.
32.
Gao
,
Y.
,
Wong
,
T. N.
,
Yang
,
C.
, and
Ooi
,
K. T.
,
2005
, “
Two-Fluid Electroosmotic Flow in Microchannels
,”
J. Colloid Interface Sci.
,
284
(
1
), pp.
306
314
.10.1016/j.jcis.2004.10.011
33.
Liu
,
M.
,
Liu
,
Y.
,
Guo
,
Q.
, and
Yang
,
J.
,
2009
, “
Modeling of Electroosmotic Pumping of Nonconducting Liquids and Biofluids by a Two-Phase Flow Method
,”
J. Electroanal. Chem.
,
636
(
1–2
), pp.
86
92
.10.1016/j.jelechem.2009.09.015
34.
Volkov
,
A. G.
,
Deamer
,
D. W.
,
Tanelian
,
D. L.
, and
Markin
,
V. S.
,
1996
, “
Electrical Double Layers at the Oil/Water Interface
,”
Prog. Surf. Sci.
,
53
(
1
), pp.
1
134
.10.1016/S0079-6816(97)82876-6
35.
Hoffman
,
J. D.
,
2001
,
Numerical Methods for Engineers and Scientists
,
CRC Press Taylor & Francis Group
,
Boca Raton, FL
.
You do not currently have access to this content.