Abstract

Experiments are carried out in supersonic flow past cavities (L/D = 1–3) to comprehend cavity oscillation from transverse to longitudinal mode. To characterize this, time-resolved schlieren images and unsteady pressure measurements are carried out. For L/D = 1, the cavity oscillation is in the transverse direction which is characterized by a single vortex along with low frequency oscillations. In the present studies, for the given length and depth, the L/D = 2 cavity shows both transverse and longitudinal mode of oscillations. This dual nature is ascertained through high-speed schlieren images and large rise in the fluctuating pressure. For L/D = 3, the cavity oscillation is in the longitudinal direction accompanied by low values of fluctuating pressure component and number of discrete modes/tones. Hence, it is believed that the transverse to longitudinal mode of cavity oscillation in the present studies occurs between L/D = 2 and 3. These cavities are driven by a thick shear layer where the vortex convection is found to be nonlinear. The comparison of dominant modes/tones with modified Rossiter and Handa relations indicates the necessity to develop a suitable model for transitional cavities. In-depth analyzes in terms of cross-correlation as well as wavelet transform divulge the basis that generates cavity modes/tones and mode switching phenomena, respectively.

References

References
1.
Sato
,
N.
,
Imamura
,
A.
,
Shiba
,
S.
,
Takahashi
,
S.
,
Tsue
,
M.
, and
Kono
,
M.
,
1999
, “
Advanced Mixing Control in Supersonic Airstream With a Wall Mounted Cavity
,”
J. Propul. Power.
,
15
(
2
), pp.
358
360
.10.2514/2.5433
2.
Yu
,
K. H.
, and
Schadow
,
K. C.
,
1994
, “
Cavity Actuated Supersonic Mixing and Combustion Control
,”
Combust. Flame
,
99
(
2
), pp.
295
301
.10.1016/0010-2180(94)90134-1
3.
Nenmeni
,
V. A.
, and
Yu
,
K.
,
2002
, “
Cavity Induced Mixing Enhancement in Confined Supersonic Flows
,”
AIAA
Paper No. 2002-1010. 10.2514/6.2002-1010
4.
Ben-Yakar
,
A.
, and
Hanson
,
R. K.
,
2001
, “
Cavity Flame Holders for Ignition and Flame Stabilization in Scramjets: An Overview
,”
J. Propul. Power.
,
17
(
4
), pp.
870
873
.10.2514/2.5818
5.
Krishnamurty
,
K.
,
1955
, “
Acoustic Radiation From Two Dimensional Cut Out in Aerodynamic Surface
,” National Advisory Committee for Aeronautics, Washington, DC, Report No.
NACA TN 3487
. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084329.pdf
6.
Chandra
,
B. U.
, and
Chakravarthy
,
S. R.
,
2005
, “
Experimental Investigation of Cavity Induced Acoustic Oscillations in Confined Supersonic Flow
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
761
769
.10.1115/1.1949642
7.
Zhang
,
X.
, and
Edwards
,
J. A.
,
1990
, “
An Investigation of Supersonic Oscillatory Cavity Flows Driven by Thick Shear Layers
,”
Aeronaut. J.
,
94
(
940
), pp.
355
364
.10.1017/S0001924000016456
8.
Kumar
,
M.
, and
Vaidyanathan
,
A.
,
2018
, “
Oscillatory Mode Transition for Supersonic Open Cavity Flows
,”
Phys. Fluids.
,
30
(
2
), p.
026101
.10.1063/1.5017269
9.
Zhang
,
X.
,
Rona
,
A.
, and
Edwards
,
J. A.
,
1998
, “
An Observation of Pressure Waves Around a Shallow Cavity
,”
J. Sound Vib.
,
214
(
4
), pp.
771
778
.10.1006/jsvi.1998.1635
10.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
.10.1017/S002211207400190X
11.
Rockwell
,
D.
, and
Naudascher
,
D.
,
1978
, “
Review: Self Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
152
165
.10.1115/1.3448624
12.
Rossiter
,
J.
,
1964
, “
Wind-Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds
,” Aeronautical Research Council, London, Report No. 3438.
13.
Bilanin
,
A. J.
, and
Covert
,
E. E.
,
1973
, “
Estimation of Possible Excitation Frequencies for Shallow Rectangular Cavities
,”
AIAA J.
,
11
(
3
), pp.
347
351
.10.2514/3.6747
14.
Heller
,
H. H.
, and
Bliss
,
D. B.
,
1975
, “
The Physical Mechanism of Flow Induced Pressure Fluctuations in Cavities and Concepts for Their Suppression
,”
AIAA
Paper No. 75-491. 10.2514/6.75-491
15.
Roshko
,
A.
,
1955
, “
Some Measurements of Flow in a Rectangular Cut Out
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Report No.
1257
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a377172.pdf
16.
Carroll
,
B. F.
, and
Dutton
,
J. C.
,
1992
, “
Multiple Normal Shock Wave/Turbulent Boundary-Layer Interactions
,”
J. Propul. Power.
,
8
(
2
), pp.
441
448
.10.2514/3.23497
17.
Mateer
,
G. G.
, and
Viegas
,
J. R.
,
1979
, “
Effect of Mach and Reynolds Numbers on a Normal Shock Wave/Turbulent Boundary Layer Interaction
,”
AIAA
Paper No. 79-1502. 10.2514/6.79-1502
18.
Handa
,
T.
,
Miyachi
,
H.
,
Kakuno
,
H.
,
Ozaki
,
T.
, and
Maruyama
,
S.
,
2015
, “
Modeling of a Feedback Mechanism in Supersonic Deep-Cavity Flows
,”
AIAA J.
,
53
(
2
), pp.
420
425
.10.2514/1.J053184
19.
Pandian
,
S.
,
Desikan
,
S.
, and
Niranjan
,
S.
,
2018
, “
Experimental Investigation of Starting Characteristics and Wave Propagation From a Shallow Open Cavity and Its Acoustic Emission at Supersonic Speed
,”
Phys. Fluids.
,
30
(
1
), p.
016104
.10.1063/1.5006813
20.
Crocco
,
L.
, and
Lees
,
L.
,
1952
, “
A Mixing Theory for the Interaction Between Dissipative Flows and Nearly Isentropic Streams
,”
J. Aeronaut. Sci.
,
19
(
10
), pp.
640
676
.10.2514/8.2426
21.
Sridhar
,
V.
,
Kleine
,
H.
, and
Gai
,
S. L.
,
2015
, “
Visualization of Wave Propagation Within a Supersonic Two-Dimensional Cavity by Digital Streak Schlieren
,”
Exp. Fluids
,
56
(
7
), p.
152
.10.1007/s00348-015-2026-3
22.
Schmit
,
R. F.
,
Grove
,
J. E.
,
Semmelmayer
,
F.
, and
Haverkamp
,
M.
,
2014
, “
Nonlinear Feedback Mechanisms Inside a Rectangular Cavity
,”
AIAA J.
,
52
(
10
), pp.
2127
2142
.10.2514/1.J052804
23.
Heller
,
H.
, and
Delfs
,
J.
,
1996
, “
Cavity Pressure Oscillations the Generating Mechanism Visualized
,”
J. Sound Vib.
,
196
(
2
), pp.
248
252
.10.1006/jsvi.1996.0480
24.
Zhuang
,
N.
,
Alvi
,
F.
,
Alkislar
,
M.
, and
Shih
,
C.
,
2006
, “
Supersonic Cavity Flows and Their Control
,”
AIAA J.
,
44
(
9
), pp.
2118
2128
.10.2514/1.14879
25.
Murray
,
R. C.
, and
Elliott
,
G. S.
,
2001
, “
Characteristics of the Compressible Shear Layer Over a Cavity
,”
AIAA J.
,
39
(
5
), pp.
846
856
.10.2514/2.1388
26.
Handa
,
T.
,
Tanigawa
,
K.
,
Kihara
,
Y.
,
Miyachi
,
H.
, and
Kakuno
,
H.
,
2015
, “
Frequencies of Transverse and Longitudinal Oscillations in Supersonic Cavity Flows
,”
Int. J. Aerosp. Eng.
,
2015
, p.
751029
.10.1155/2015/751029
You do not currently have access to this content.