Abstract

Many microfluidics-based applications involve fluid–structure interaction (FSI) of flexible membranes. Thin flexible membranes are now being widely used for mixing enhancement, particle segregation, flowrate control, drug delivery, etc. The FSI simulations related to these applications are challenging to numerically implement. In this direction, techniques like immersed boundary method (IBM) have been successful. In this study, two-dimensional numerical simulation of flexible membrane fixed at two end points in a rectangular channel subjected to uniform fluid flow is carried out at low Reynolds number using a finite volume based IBM. A staggered Cartesian grid system is used and SIMPLE algorithm is used to solve the governing continuity and Navier–Stokes equations. The developed model is validated using the previous research work and numerical simulations are carried out for different parametric test cases. Different membrane mode shapes are observed due to the complex interplay between the hydrodynamics and structural elastic forces. Since the membrane undergoes deformation with respect to inlet fluid conditions, a variation in flowrate past the flexible structure is confirmed. It is found that, by changing the membrane length, bending rigidity, and its initial position in the channel, flowrate can be controlled. Also, for membranes that are placed at the channel midplane undergoing self-excited oscillations, there exists a critical dimensionless membrane length condition L ≥ 1.0 that governs this behavior. Finally, an artificial neural network (ANN) model is developed that successfully predicts flowrate in the channel for different membrane parameters.

References

References
1.
Shelley
,
M. J.
, and
Zhang
,
J.
,
2011
, “
Flapping and Bending Bodies Interacting With Fluid Flows
,”
Ann. Rev. Fluid Mech.
,
43
(
1
), pp.
449
465
.10.1146/annurev-fluid-121108-145456
2.
Allen
,
J. J.
, and
Smits
,
A. J.
,
2001
, “
Energy Harvesting Eel
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
629
640
.10.1006/jfls.2000.0355
3.
Watanabe
,
Y.
,
Suzuki
,
S.
,
Sugihara
,
M.
, and
Sueoka
,
Y.
,
2002
, “
An Experimental Study of Paper Flutter
,”
J. Fluids Struct.
,
16
(
4
), pp.
529
542
.10.1006/jfls.2001.0435
4.
Shen
,
L.
,
Zhang
,
X.
,
Yue
,
D. K. P.
, and
Triantafyllou
,
M. S.
,
2003
, “
Turbulent Flow Over a Flexible Wall Undergoing a Streamwise Travelling Wave Motion
,”
J. Fluid Mech.
,
484
(
1
), pp.
197
221
.10.1017/S0022112003004294
5.
Vogel
,
S.
,
1996
,
Life in Moving Fluids: The Physical Biology of Flow
,
Princeton University Press
,
Princeton, NJ
.
6.
Liao
,
J. C.
,
Beal
,
D. N.
,
Lauder
,
G. V.
, and
Triantafyllou
,
M. S.
,
2003
, “
Fish Exploiting Vortices Decrease Muscle Activity
,”
Science
,
302
(
5650
), pp.
1566
1569
.10.1126/science.1088295
7.
Müller
,
U. K.
,
2003
, “
Fish'n Flag
,”
Science
,
302
(
5650
), pp.
1511
1512
.10.1126/science.1092367
8.
Taneda
,
S.
,
1968
, “
Waving Motions of Flags
,”
J. Phys. Soc. Jpn.
,
24
(
2
), pp.
392
401
.10.1143/JPSJ.24.392
9.
Zhang
,
J.
,
Childress
,
S.
,
Libchaber
,
A.
, and
Shelley
,
M.
,
2000
, “
Flexible Filaments in a Flowing Soap Film as a Model for One-Dimensional Flags in a Two-Dimensional Wind
,”
Nature
,
408
(
6814
), p.
835
.10.1038/35048530
10.
Zhu
,
L.
, and
Peskin
,
C. S.
,
2002
, “
Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method
,”
J. Comput. Phys.
,
179
(
2
), pp.
452
468
.10.1006/jcph.2002.7066
11.
Farnell
,
D. J. J.
,
David
,
T.
, and
Barton
,
D. C.
,
2004
, “
Numerical Simulations of a Filament in a Flowing Soap Film
,”
Int. J. Numer. Methods Fluids
,
44
(
3
), pp.
313
330
.10.1002/fld.640
12.
Shelley
,
M.
,
Vandenberghe
,
N.
, and
Zhang
,
J.
,
2005
, “
Heavy Flags Undergo Spontaneous Oscillations in Flowing Water
,”
Phys. Rev. Lett.
,
94
(
9
), p.
094302
.10.1103/PhysRevLett.94.094302
13.
Yongsam
,
K.
, and
Peskin
,
C. S.
,
2006
, “
2-D Parachute Simulation by the Immersed Boundary Method
,”
SIAM J. Sci. Comput.
,
28
(
6
), pp.
2294
2312
.10.1137/S1064827501389060
14.
Huang
,
W. X.
,
Shin
,
S. J.
, and
Sung
,
H. J.
,
2007
, “
Simulation of Flexible Filaments in a Uniform Flow by the Immersed Boundary Method
,”
J. Comput. Phys.
,
226
(
2
), pp.
2206
2228
.10.1016/j.jcp.2007.07.002
15.
Christophe
,
E.
,
Lagrange
,
R.
,
Souilliez
,
C.
, and
Schouveiler
,
L.
,
2008
, “
Aeroelastic Instability of Cantilevered Flexible Plates in Uniform Flow
,”
J. Fluid Mech.
,
611
(
1
), pp.
97
106
.10.1017/S002211200800284X
16.
Sygulski
,
R.
,
2007
, “
Stability of Membrane in Low Subsonic Flow
,”
Int. J. Non-Linear Mech.
,
42
(
1
), pp.
196
202
.10.1016/j.ijnonlinmec.2006.11.012
17.
Bertram
,
C. D.
,
2003
, “
Experimental Studies of Collapsible Tubes
,”
Flow Past Highly Compliant Boundaries and in Collapsible Tubes
,
P. W.
Carpenter
, and
T. J.
Pedley
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
51
65
.
18.
Krindel
,
P.
, and
Silberberg
,
A.
,
1979
, “
Flow Through Gel-Walled Tubes
,”
J. Colloid Interface Sci.
,
71
(
1
), pp.
39
50
.10.1016/0021-9797(79)90219-4
19.
Chakraborty
,
D. J.
,
Prakash
,
R.
,
Friend
,
J.
, and
Yeo
,
L.
,
2012
, “
Fluid-Structure Interaction in Deformable Microchannels
,”
Phys. Fluids
,
24
(
10
), p.
102002
.10.1063/1.4759493
20.
Thaokar
,
R. M.
, and
Kumaran
,
V.
,
2002
, “
Stability of Fluid Flow Past a Membrane
,”
J. Fluid Mech.
,
472
(
1
), pp.
29
50
.10.1017/S0022112002001751
21.
Heil
,
M.
, and
Jensen
,
O. E.
,
2003
, “
Flows in Deformable Tubes and Channels
,”
Flow Past Highly Compliant Boundaries and in Collapsible Tubes
,
P. W.
Carpenter
, and
T. J.
Pedley
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
15
49
.
22.
Luo
,
X. Y.
, and
Pedley
,
T. J.
,
1996
, “
A Numerical Simulation of Unsteady Flow in a Two-Dimensional Collapsible Channel
,”
J. Fluid Mech.
,
314
(
1
), pp.
191
225
.10.1017/S0022112096000286
23.
Liang
,
S. J.
,
Neitzel
,
G. P.
, and
Aidun
,
C. K.
,
1997
, “
Finite Element Computations for Unsteady Fluid and Elastic Membrane Interaction Problems
,”
Int. J. Numer. Methods Fluids
,
24
(
11
), pp.
1091
1110
.10.1002/(SICI)1097-0363(19970615)24:11<1091::AID-FLD520>3.0.CO;2-Q
24.
Huang
,
L.
,
2001
, “
Viscous Flutter of a Finite Elastic Membrane in Poiseuille Flow
,”
J. Fluids Struct.
,
15
(
7
), pp.
1061
1088
.10.1006/jfls.2001.0392
25.
Luo
,
X. Y.
,
Cai
,
Z. X.
,
Li
,
W. G.
, and
Pedley
,
T. J.
,
2008
, “
The Cascade Structure of Linear Instability in Collapsible Channel Flows
,”
J. Fluid Mech.
,
600
(
1
), pp.
45
76
.10.1017/S0022112008000293
26.
Liu
,
H. F.
,
Luo
,
X. Y.
,
Cai
,
Z. X.
, and
Pedley
,
T. J.
,
2009
, “
Sensitivity of Unsteady Collapsible Channel Flows to Modelling Assumptions
,”
Commun. Numer. Methods Eng.
,
25
(
5
), pp.
483
504
.10.1002/cnm.1217
27.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.10.1016/0021-9991(72)90065-4
28.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
(
1
), pp.
479
517
.10.1017/S0962492902000077
29.
Griffith
,
B. E.
,
Luo
,
X.
,
McQueen
,
D. M.
, and
Peskin
,
C. S.
,
2009
, “
Simulating the Fluid Dynamics of Natural and Prosthetic Heart Valves Using the Immersed Boundary Method
,”
Int. J. Appl. Mech.
,
1
(
1
), pp.
137
177
.10.1142/S1758825109000113
30.
Rejniak
,
K. A.
, and
Dillon
,
R. H.
,
2007
, “
A Single Cell-Based Model of the Ductal Tumour Microarchitecture
,”
Comput. Math. Methods Med.
,
8
(
1
), pp.
51
69
.10.1080/17486700701303143
31.
Huang
,
W. X.
,
Chang
,
C. B.
, and
Sung
,
H. J.
,
2012
, “
Three-Dimensional Simulation of Elastic Capsules in Shear Flow by the Penalty Immersed Boundary Method
,”
J. Comput. Phys.
,
231
(
8
), pp.
3340
3364
.10.1016/j.jcp.2012.01.006
32.
Boyoung
,
K.
,
Chang
,
C. B.
,
Park
,
S. G.
, and
Sung
,
H. J.
,
2015
, “
Inertial Migration of a 3D Elastic Capsule in a Plane Poiseuille Flow
,”
Int. J. Heat Fluid Flow
,
54
(
1
), pp.
87
96
.10.1016/j.ijheatfluidflow.2015.04.006
33.
Shin
,
S. J.
, and
Sung
,
H. J.
,
2012
, “
Dynamics of an Elastic Capsule in Moderate Reynolds Number Poiseuille Flow
,”
Int. J. Heat Fluid Flow
,
36
(
1
), pp.
167
177
.10.1016/j.ijheatfluidflow.2012.04.011
34.
Park
,
S. G.
,
Boyoung
,
K.
,
Lee
,
J.
,
Huang
,
W. X.
, and
Sung
,
H. J.
,
2015
, “
Dynamics of Prolate Jellyfish With a Jet-Based Locomotion
,”
J. Fluids Struct.
,
57
(
1
), pp.
331
343
.10.1016/j.jfluidstructs.2015.07.002
35.
Park
,
S. G.
,
Chang
,
C. B.
,
Huang
,
W. X.
, and
Sung
,
H. J.
,
2014
, “
Simulation of Swimming Oblate Jellyfish With a Paddling-Based Locomotion
,”
J. Fluid Mech.
,
748
(
1
), pp.
731
755
.10.1017/jfm.2014.206
36.
Huang
,
W. X.
, and
Sung
,
H. J.
,
2009
, “
An Immersed Boundary Method for Fluid–Flexible Structure Interaction
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
33–36
), pp.
2650
2661
.10.1016/j.cma.2009.03.008
37.
Qin
,
F. H.
,
Huang
,
W. X.
, and
Sung
,
H. J.
,
2012
, “
Simulation of Small Swimmer Motions Driven by Tail/Flagellum Beating
,”
Comput. Fluids
,
55
(
1
), pp.
109
117
.10.1016/j.compfluid.2011.11.006
38.
Maniyeri
,
R.
,
Suh
,
Y. K.
,
Kang
,
S.
, and
Kim
,
M. J.
,
2012
, “
Numerical Study on the Propulsion of a Bacterial Flagellum in a Viscous Fluid Using an Immersed Boundary Method
,”
Comput. Fluids
,
6291
, pp.
13
24
.10.1016/j.compfluid.2012.03.012
39.
Maniyeri
,
R.
, and
Kang
,
S.
,
2014
, “
Numerical Study on Bacterial Flagellar Bundling and Tumbling in a Viscous Fluid Using an Immersed Boundary Method
,”
Appl. Math. Model.
,
38
(
14
), pp.
3567
3590
.10.1016/j.apm.2013.11.059
40.
Maniyeri
,
R.
, and
Kang
,
S.
,
2014
, “
Hydrodynamic Interaction Between Two Swimming Bacterial Flagella in a Viscous Fluid—A Numerical Study Using an Immersed Boundary Method
,”
Prog. Comput. Fluid Dyn. Int. J.
,
14
(
6
), pp.
375
385
.10.1504/PCFD.2014.065466
41.
Nangia
,
N.
,
Patankar
,
N. A.
, and
Bhalla
,
A. P. S.
,
2019
, “
A DLM Immersed Boundary Method Based Wave-Structure Interaction Solver for High Density Ratio Multiphase Flows
,”
J. Comput. Phys.
, 398(1), p.
108804
.10.1016/j.jcp.2019.07.004
42.
Pathak
,
A.
, and
Raessi
,
M.
,
2016
, “
A 3D, Fully Eulerian, VOF-Based Solver to Study the Interaction Between Two Fluids and Moving Rigid Bodies Using the Fictitious Domain Method
,”
J. Comput. Phys.
,
311
(
1
), pp.
87
113
.10.1016/j.jcp.2016.01.025
43.
González
,
F. A.
,
Cruchaga
,
M. A.
, and
Celentano
,
D. J.
,
2017
, “
Analysis of Flow Past Oscillatory Cylinders Using a Finite Element Fixed Mesh Formulation
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081202
.10.1115/1.4036247
44.
Wei
,
Z. A.
, and
Zheng
,
Z. C.
,
2018
, “
Fluid–Structure Interaction Simulation on Energy Harvesting From Vortical Flows by a Passive Heaving Foil
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011105
.10.1115/1.4037661
45.
Liu
,
X.
,
Yang
,
B.
,
Ji
,
C.
,
Chen
,
Q.
, and
Song
,
M.
,
2018
, “
Research on the Turbine Blade Vibration Base on the Immersed Boundary Method
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061402
.10.1115/1.4038866
46.
Zhang
,
C.
,
Wu
,
C.
, and
Nandakumar
,
K.
,
2019
, “
Effective Geometric Algorithms for Immersed Boundary Method Using Signed Distance Field
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061401
.10.1115/1.4041758
47.
Kim
,
B.
,
Park
,
S. G.
,
Huang
,
W. X.
, and
Sung
,
H. J.
,
2017
, “
An Autonomous Flexible Propulsor in a Quiescent Flow
,”
Int. J. Heat Fluid Flow
,
68
(
1
), pp.
151
157
.10.1016/j.ijheatfluidflow.2017.10.006
48.
Kim
,
B.
,
Park
,
S. G.
,
Huang
,
W. X.
, and
Sung
,
H. J.
,
2016
, “
Self-Propelled Heaving and Pitching Flexible Fin in a Quiescent Flow
,”
Int. J. Heat Fluid Flow
,
62
(
1
), pp.
273
281
.10.1016/j.ijheatfluidflow.2016.10.004
49.
Santarelli
,
C.
,
Kempe
,
T.
, and
Fröhlich
,
J.
,
2016
, “
Immersed Boundary Methods for Heat Transfer
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
2
), pp.
504
514
.10.1108/HFF-01-2015-0036
50.
Nangia
,
N.
,
Johansen
,
H.
,
Patankar
,
N. A.
, and
Bhalla
,
A. P. S.
,
2017
, “
A Moving Control Volume Approach to Computing Hydrodynamic Forces and Torques on Immersed Bodies
,”
J. Comput. Phys.
,
347
(
1
), pp.
437
462
.10.1016/j.jcp.2017.06.047
51.
Wang
,
S.
, and
Zhang
,
X.
,
2011
, “
An Immersed Boundary Method Based on Discrete Stream Function Formulation for Two-and Three-Dimensional Incompressible Flows
,”
J. Comput. Phys.
,
230
(
9
), pp.
3479
3499
.10.1016/j.jcp.2011.01.045
52.
Rosenblatt
,
F.
,
1958
, “
The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain
,”
Psychol. Rev.
,
65
(
6
), p.
386
.10.1037/h0042519
53.
Werbos
,
P. J.
,
1974
, “
Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
,” Ph. D. dissertation, Harvard University, Cambridge, MA.
54.
Werbos
,
P. J.
,
1988
, “
Backpropagation: Past and Future
,”
Proceedings of the Second International Conference on Neural Network
, San Diego, CA, July 24–27, pp.
343
353
.10.1109/ICNN.1988.23866
55.
Kocabaş
,
F.
,
Ünal
,
S.
, and
Ünal
,
B.
,
2008
, “
A Neural Network Approach for Prediction of Critical Submergence of an Intake in Still Water and Open Channel Flow for Permeable and Impermeable Bottom
,”
Comput. Fluids
,
37
(
8
), pp.
1040
1046
.10.1016/j.compfluid.2007.11.002
56.
Moises
,
J. M.
, and
Mariel
,
A. P.
,
2019
, “
Fatigue Damage Effect Approach by Artificial Neural Network
,”
Int. J. Fatigue
,
124
(
1
), pp.
42
47
.10.1016/j.ijfatigue.2019.02.043
57.
Taheri
,
M. H.
,
Abbasi
,
M.
, and
Jamei
,
M. K.
,
2019
, “
Using Artificial Neural Network for Computing the Development Length of MHD Channel Flows
,”
Mech. Res. Commun.
,
99
(
1
), pp.
8
14
.10.1016/j.mechrescom.2019.06.003
58.
Pena
,
F. L.
,
Casás
,
V. D.
,
Gosset
,
A.
, and
Duro
,
R. J.
,
2012
, “
A Surrogate Method Based on the Enhancement of Low Fidelity Computational Fluid Dynamics Approximations by Artificial Neural Networks
,”
Comput. Fluids
,
58
(
1
), pp.
112
119
.10.1016/j.compfluid.2012.01.008
59.
Pandya
,
D. A.
,
Dennis
,
B. H.
, and
Russell
,
R. D.
,
2017
, “
A Computational Fluid Dynamics Based Artificial Neural Network Model to Predict Solid Particle Erosion
,”
Wear
,
378
(
1
), pp.
198
210
.10.1016/j.wear.2017.02.028
60.
Huang
,
H. X.
, and
Miao
,
Y. S.
,
2007
, “
Finite Element and Neural Network Modeling of Viscoelastic Annular Extrusion
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
218
225
.10.1115/1.2409357
61.
Ouyang
,
K.
,
Wu
,
S. J.
, and
Huang
,
H. H.
,
2013
, “
Optimum Parameter Design of Microbubble Drag Reduction in a Turbulent Flow by the Taguchi Method Combined With Artificial Neural Networks
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111301
.10.1115/1.4024930
62.
Anand
,
D. V.
,
Vedantam
,
S.
, and
Patnaik
,
B. S. V.
,
2016
, “
Dissipative Particle Dynamics Simulation of Shear Flow in a Microchannel With a Deformable Membrane
,”
Microfluid. Nanofluid.
,
20
(
12
), p.
161
.10.1007/s10404-016-1819-x
63.
Hayase
,
T.
,
Humphrey
,
J. A. C.
, and
Greif
,
R.
,
1992
, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
,
98
(
1
), pp.
108
118
.10.1016/0021-9991(92)90177-Z
64.
Kanchan
,
M.
, and
Maniyeri
,
R.
,
2019
, “
Numerical Analysis of the Buckling and Recuperation Dynamics of Flexible Filament Using an Immersed Boundary Framework
,”
Int. J. Heat Fluid Flow
,
77
(
1
), pp.
256
277
.10.1016/j.ijheatfluidflow.2019.04.011
65.
Kanchan
,
M.
, and
Maniyeri
,
R.
,
2019
, “
Numerical Simulation of Buckling and Asymmetric Behavior of Flexible Filament Using Temporal Second-Order Immersed Boundary Method
,”
Int. J. Numer. Methods Heat Fluid Flow
, epub.10.1108/HFF-06-2019-0467
66.
Kanchan
,
M.
, and
Maniyeri
,
R.
,
2019
, “
Computational Study of Fluid Flow in Wavy Channels Using Immersed Boundary Method
,”
Soft Computing for Problem Solving
,
J. C.
Bansal
,
K. N.
Das
,
A.
Nagar
,
K.
Deep
, and
A. K.
Ojha
, eds.,
Springer
,
Singapore
, pp.
283
293
.
67.
Kanchan
,
M.
, and
Maniyeri
,
R.
,
2018
, “
Flow Analysis for Efficient Design of Wavy Structured Microchannel Mixing Devices
,”
AIP Conf. Proc.
,
1943
(
1
), p.
020042
.10.1063/1.5029618
68.
Sivanandam
,
S. N.
, and
Deepa
,
S. N.
,
2006
,
Introduction to Neural Networks Using Matlab 6.0
,
Tata McGraw-Hill Education
, New York.
69.
Haykin
,
S.
,
1194
,
Neural Networks: A Comprehensive Foundation
,
Prentice Hall PTR
, Upper Saddle River, NJ.
70.
Vogl
,
T. P.
,
Mangis
,
J. K.
,
Rigler
,
A. K.
,
Zink
,
W. T.
, and
Alkon
,
D. L.
,
1988
, “
Accelerating the Convergence of the Back-Propagation Method
,”
Biol. Cybern.
,
59
(
4–5
), pp.
257
263
.10.1007/BF00332914
71.
Harrington
,
P. B.
,
1993
, “
Sigmoid Transfer Functions in Backpropagation Neural Networks
,”
Anal. Chem.
,
65
(
15
), pp.
2167
2168
.10.1021/ac00063a042
72.
The MathWorks, Inc.
,
2018
,
MATLAB R2018b Documentation
,
The MathWorks
,
Natick, MA
.
73.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signal Syst.
,
2
(
4
), pp.
303
314
.10.1007/BF02551274
You do not currently have access to this content.