Abstract

Continuum-based theories, such as Navier–Stokes (NS) equations, have been considered inappropriate for flows under nonequilibrium conditions. In part, it is due to the lack of rotational degrees-of-freedom in the Maxwell–Boltzmann distribution. The Boltzmann–Curtiss formulation describes gases allowing both rotational and translational degrees-of-freedom and forms morphing continuum theory (MCT). The first-order solution to Boltzmann–Curtiss equation yields a stress tensor that contains a coupling coefficient that is dependent on the particles number density, the temperature, and the total relaxation time. A new bulk viscosity model derived from the Boltzmann–Curtiss distribution is employed for shock structure and temperature profile under translational and rotational nonequilibrium. Numerical simulations of argon and nitrogen shock profiles are performed in the Mach number range of 1.2–9. The current study, when comparing with experimental measurements and direct simulation Monte Carlo (DSMC) method, shows a significant improvement in the density profile, normal stresses, and shock thickness at nonequilibrium conditions than NS equations. The results indicate that equations derived from the Boltzmann–Curtiss distribution are valid for a wide range of nonequilibrium conditions than those from the Maxwell–Boltzmann distribution.

References

References
1.
Hejranfar
,
K.
, and
Rahmani
,
S.
,
2019
, “
An Assessment of Shock-Disturbances Interaction Considering Real Gas Effects
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
01120
.10.1115/1.4040446
2.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
,
1965
,
Introduction to Physical Gas Dynamics
,
Wiley, Hoboken, NJ
.
3.
Boyd
,
I. D.
,
Chen
,
G.
, and
Candler
,
G. V.
,
1995
, “
Predicting Failure of the Continuum Fluid Equations in Transitional Hypersonic Flows
,”
Phys. Fluids
,
7
(
1
), pp.
210
219
.10.1063/1.868720
4.
Schwartzentruber
,
T. E.
, and
Boyd
,
I. D.
,
2006
, “
A Hybrid Particle-Continuum Method Applied to Shock Waves
,”
J. Comput. Phys.
,
215
(
2
), pp.
402
416
.10.1016/j.jcp.2005.10.023
5.
Shah
,
N.
,
Gavasane
,
A.
,
Agrawal
,
A.
, and
Bhandarkar
,
U.
,
2018
, “
Comparison of Various Pressure Based Boundary Conditions for Three-Dimensional Subsonic DSMC Simulation
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031205
.10.1115/1.4037679
6.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases—Part I: Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
7.
Boyd
,
I. D.
, and
Schwartzentruber
,
T. E.
,
2017
,
Nonequilibrium Gas Dynamics and Molecular Simulation
,
Cambridge University Press
, Cambridge, UK.
8.
Truesdell
,
C.
, and
Rajagopal
,
K. R.
,
2010
,
An Introduction to the Mechanics of Fluids
,
Springer Science & Business Media, Berlin.
9.
Eringen
,
A. C.
,
1980
,
Mechanics of Continua
,
Robert E. Krieger Publishing Co
,
Huntington, NY
, p.
606
.
10.
Graves
,
R. E.
, and
Argrow
,
B. M.
,
1999
, “
Bulk Viscosity: Past to Present
,”
J. Thermophys. Heat Transfer
,
13
(
3
), pp.
337
342
.10.2514/2.6443
11.
Wang
,
W. L.
, and
Boyd
,
I. D.
,
2003
, “
Predicting Continuum Breakdown in Hypersonic Viscous Flows
,”
Phys. Fluids
,
15
(
1
), pp.
91
100
.10.1063/1.1524183
12.
Lofthouse
,
A. J.
,
Boyd
,
I. D.
, and
Wright
,
M. J.
,
2007
, “
Effects of Continuum Breakdown on Hypersonic Aerothermodynamics
,”
Phys. Fluids
,
19
(
2
), p.
027105
.10.1063/1.2710289
13.
Fiscko
,
K. A.
, and
Chapman
,
D. R.
,
1989
, “
Comparison of Burnett, Super-Burnett and Monte Carlo Solutions for Hypersonic Shock Structure
,”
Progress in Astronautics and Aeronautics
, in Weave, D. P., Campbell, D. H., and Muntz, E. P., eds., Rarefied GAs Dynamics: Theoretical and Computational Technique, pp. 374–395.
14.
Madigosky
,
W. M.
,
1967
, “
Density Dependence of the Bulk Viscosity in Argon
,”
J. Chem. Phys.
,
46
(
11
), pp.
4441
4444
.10.1063/1.1840564
15.
Chapman
,
D. R.
, and
Fiscko
,
K. A.
,
1988
, “
Fundamental Problem in Computing Radiating Flow Fields With Thick Shock Waves
,”
Proc. SPIE
879
, pp.
106
112
.10.1117/12.943985
16.
Dahler
,
J. S.
,
1959
, “
Transport Phenomena in a Fluid Composed of Diatomic Molecules
,”
J. Chem. Phys.
,
30
(
6
), pp.
1447
1475
.10.1063/1.1730220
17.
Dahler
,
J. S.
, and
Scriven
,
L. E.
,
1961
, “
Angular Momentum of Continua
,”
Nature
,
192
(
4797
), pp.
36
37
.10.1038/192036a0
18.
Taniguchi
,
S.
,
Arima
,
T.
,
Ruggeri
,
T.
, and
Sugiyama
,
M.
,
2014
, “
Thermodynamic Theory of the Shock Wave Structure in a Rarefied Polyatomic Gas: Beyond the Bethe-Teller Theory
,”
Phys. Rev. E
,
89
(
1
), p.
013025
.10.1103/PhysRevE.89.013025
19.
Kosuge
,
S.
,
Aoki
,
K.
, and
Goto
,
T.
,
2016
, “
Shock Wave Structure in Polyatomic Gases: Numerical Analysis Using a Model Boltzmann Equation
,”
AIP Conference Proceedings
, Vol.
1786
p.
180004
.https://doi.org/10.1063/1.4967673
20.
Xu
,
K.
, and
Josula
,
E.
,
2006
, “
Continuum Formulation for Non-Equilibrium Shock Structure Calculation
,”
Commun. Comput. Phys.
,
1
(
3
), pp.
425
450
.http://www.global-sci.org/intro/article_detail/cicp/7963.html
21.
Boltzmann
,
L.
,
1964
,
Lectures on Gas Theory
,
Dover
.
22.
Wu
,
L.
,
White
,
C.
,
Scanlon
,
T. J.
,
Reese
,
J. M.
, and
Zhang
,
Y.
,
2015
, “
A Kinetic Model of the Boltzmann Equations for Non-Vibrating Polyatomic Gases
,”
J. Fluid Mech.
,
763
, pp.
24
50
.10.1017/jfm.2014.632
23.
Bisi
,
M.
, and
Spiga
,
G.
,
2017
, “
Hydrodynamic Limits of Kinetic Equations for Polyatomic and Reactive Gases
,”
Commun. Appl. Ind. Math.
,
8
(
1
), pp.
23
42
.10.1515/caim-2017-0002
24.
Chen
,
J.
,
2017
, “
An Advanced Kinetic Theory for Morphing Continuum With Inner Structures
,”
Rep. Math. Phys.
,
80
(
3
), pp.
317
332
.10.1016/S0034-4877(18)30004-1
25.
Wonnell
,
L. B.
, and
Chen
,
J.
,
2019
, “
First-Order Approximation to the Boltzmann–Curtiss Equation for Flows With Local Spin
,”
J. Eng. Math.
,
114
(
1
), pp.
43
49
.10.1007/s10665-018-9981-7
26.
Chen
,
J.
,
2017
, “
Morphing Continuum Theory for Turbulence: Theory, Computation, and Visualization
,”
Phys. Rev. E
,
96
(
4
), p.
043108
.10.1103/PhysRevE.96.043108
27.
Cheikh
,
M. I.
,
Wonnell
,
L. B.
, and
Chen
,
J.
,
2018
, “
Morphing Continuum Analysis of Energy Transfer in Compressible Turbulence
,”
Phys. Rev. Fluids
,
3
(
2
), p.
024604
.10.1103/PhysRevFluids.3.024604
28.
Wonnell
,
L. B.
,
Cheikh
,
M. I.
, and
Chen
,
J.
,
2018
, “
Morphing Continuum Simulation of Transonic Flow Over Axisymmetric Hill
,”
AIAA J.
,
56
(
11
), pp.
4321
4330
.10.2514/1.J057064
29.
Curtiss
,
C. F.
,
1981
, “
The Classical Boltzmann Equation of a Gas of Diatomic Molecules
,”
J. Chem. Phys.
,
75
(
1
), pp.
376
378
.10.1063/1.441792
30.
Curtiss
,
C. F.
,
1992
, “
The Classical Boltzmann Equation of a Molecular Gas
,”
J. Chem. Phys.
,
97
(
2
), pp.
1416
1419
.10.1063/1.463267
31.
Curtiss
,
C. F.
, and
Dahler
,
J. S.
,
1963
, “
Kinetic Theory of Nonspherical Molecules. V
,”
J. Chem. Phys.
,
38
(
10
), pp.
2352
2363
.10.1063/1.1733510
32.
Wonnell
,
L. B.
,
2018
, “
A Kinetic Analysis of Morphing Continuum Theory for Fluid Flows
,” Ph.D. thesis,
Kansas State University, Manhattan, KS.
33.
Chen
,
J.
,
Liang
,
C.
, and
Lee
,
J. D.
,
2012
, “
Numerical Simulation for Unsteady Compressible Micropolar Fluid Flow
,”
Comput. Fluids
,
66
, pp.
1
9
.10.1016/j.compfluid.2012.05.015
34.
Ubbelohde
,
A. R.
,
1935
, “
The Heat Conductivity and Viscosity of Polyatomic Gases
,”
Journal of Chemical Physics,
3
,
219
.
35.
Fowles
,
G. R.
, and
Cassiday
,
G. L.
,
2004
,
Analytical Mechanics
,
Cengage Learning,
Boston, MA.
36.
Huang
,
K.
,
1987
,
Statistical Mechanics
,
Wiley, Hoboken, NJ
.
37.
Svehla
,
R. A.
,
1962
, “
Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures
,” NASA, Report No. NASA-TR-R-132.
38.
Jeans
,
J. H.
,
1921
,
The Dynamical Theory of Gases
, Cambridge
University Press
, Cambridge, UK.
39.
Parker
,
J. G.
,
1959
, “
Rotational and Vibrational Relaxation in Diatomic Gases
,”
Phys. Fluids
,
2
(
4
), pp.
449
462
.10.1063/1.1724417
40.
Kurganov
,
A.
,
Noelle
,
S.
, and
Petrova
,
G.
,
2001
, “
Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles
,”
SIAM J. Sci. Comput.
,
23
(
3
), pp.
707
740
.10.1137/S1064827500373413
41.
Roy
,
C. J.
,
McWherter-Payne
,
M. A.
, and
Oberkampf
,
W. L.
,
2003
, “
Verification and Validation for Laminar Hypersonic Flow fields—Part 1: Verification
,”
AIAA J.
,
41
(
10
), pp.
1934
1943
.10.2514/2.1909
42.
Roy
,
C. J.
,
Oberkampf
,
W. L.
, and
McWherter-Payne
,
M. A.
,
2003
, “
Verification and Validation for Laminar Hypersonic Flow fields—Part 2: Validation
,”
AIAA J.
,
41
(
10
), pp.
1944
1954
.10.2514/2.1884
43.
Ahmed
,
M. M.
, and
Chen
,
J.
,
2019
, “
Verification and Validation of a Morphing Continuum Approach to Hypersonic Flow Simulations
,”
AIAA
Paper No. AIAA2019-0891.10.2514/6.AIAA2019-0891
44.
Alsmeyer
,
H.
,
1976
, “
Density Profiles in Argon and Nitrogen Shock Waves Measured by the Absorption of an Electron Beam
,”
J. Fluid Mech.
,
74
(
3
), pp.
497
513
.10.1017/S0022112076001912
45.
Josyula
,
E.
, and
Wadsworth
,
D.
,
2004
, “
Internal Energy Mode Relaxation in High Speed Continuum and Rarefied Flows
,”
AIAA
Paper No. 2004-1182.10.2514/6.2004-1182
46.
Bird
,
G. A.
,
1970
, “
Aspects of the Structure of Strong Shock Waves
,”
Phys. Fluids
,
13
(
5
), pp.
1172
1177
.10.1063/1.1693047
47.
Camac
,
M.
,
1964
, “
Argon and Nitrogen Shock Thicknesses
,”
Aerospace Sciences Meeting
, AIAA, New York, p.
35
.
You do not currently have access to this content.