Abstract

Laboratory experiments are performed to explore distinct features of the unsteady wake induced by a rigid plate undergoing a series of accelerated and decelerated phases in a quiescent water tank. Each plate motion pattern is defined by a constant acceleration from the rest followed by the same magnitude deceleration until rest; i.e., both of them lasting the same time interval. Flow statistics are obtained for various plate acceleration/deceleration motions in a plane normal to the plate span using particle image velocimetry. Results revealed that the relative near-wake bulk flow underwent acceleration during 75% of the plate cycle; the associated maximum velocity was reached approximately at the middle of the deceleration phase in all the cases. Transversal velocity profiles in the near wake were significantly modulated by the magnitude and sign of the plate acceleration. The dynamics of the large-scale coherent motions shed by the plate was also dependent on plate acceleration pattern. However, the near-wake nondimensional circulation strength reached a plateau roughly at the end of the acceleration phase and was approximately conserved despite the modulation of the deceleration phase. In the early stage of the plate motion, the Lagrangian flow acceleration was dominant; however, the local acceleration dominated at the end of the cycle.

References

1.
Birch
,
J. M.
, and
Dickinson
,
M. H.
,
2001
, “
Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings
,”
Nature
,
412
(
6848
), pp.
729
733
.10.1038/35089071
2.
Drucker
,
E. G.
, and
Lauder
,
G. V.
,
1999
, “
Locomotor Forces on a Swimming Fish: Three-Dimensional Vortex Wake Dynamics Quantified Using Digital Particle Image Velocimetry
,”
J. Exp. Biol.
,
202
(
Pt 18
), pp.
2393
2412
.https://jeb.biologists.org/content/202/18/2393.short
3.
Ellington
,
C. P.
,
Van Den Berg
,
C.
,
Willmott
,
A. P.
, and
Thomas
,
A. L.
,
1996
, “
Leading-Edge Vortices in Insect Flight
,”
Nature
,
384
(
6610
), pp.
626
630
.10.1038/384626a0
4.
Spedding
,
G.
,
Rosén
,
M.
, and
Hedenström
,
A.
,
2003
, “
A Family of Vortex Wakes Generated by a Thrush Nightingale in Free Flight in a Wind Tunnel Over Its Entire Natural Range of Flight Speeds
,”
J. Exp. Biol.
,
206
(
14
), pp.
2313
2344
.10.1242/jeb.00423
5.
Srygley
,
R.
, and
Thomas
,
A.
,
2002
, “
Unconventional Lift-Generating Mechanisms in Free-Flying Butterflies
,”
Nature
,
420
(
6916
), pp.
660
664
.10.1038/nature01223
6.
Ellington
,
C.
,
1984
, “
The Aerodynamics of Hovering Insect Flight: III: Kinematics
,”
Philos. Trans. R. Soc. London B
,
305
(
1122
), pp.
41
78
.10.1098/rstb.1984.0051
7.
Ennos
,
A. R.
,
1987
, “
A Comparative Study of the Flight Mechanism of Diptera
,”
J. Exp. Biol.
,
127
(
1
), pp.
355
372
.10.1111/j.1096-3642.1989.tb01820.x
8.
Ennos
,
A. R.
,
1989
, “
The Kinematics and Aerodynamics of the Free Flight of Some Diptera
,”
J. Exp. Biol.
,
142
(
1
), pp.
49
85
.
9.
Taneda
,
S.
, and
Honji
,
H.
,
1971
, “
Unsteady Flow Past a Flat Plate Normal to the Direction of Motion
,”
J. Phys. Soc. Jpn.
,
30
(
1
), pp.
262
272
.10.1143/JPSJ.30.262
10.
Koumoutsakos
,
P.
, and
Shiels
,
D.
,
1996
, “
Simulations of the Viscous Flow Normal to an Impulsively Started and Uniformly Accelerated Flat Plate
,”
J. Fluid Mech.
,
328
, pp.
177
227
.10.1017/S0022112096008695
11.
Luchini
,
P.
, and
Tognaccini
,
R.
,
2002
, “
The Start-Up Vortex Issuing From a Semi-Infinite Flat Plate
,”
J. Fluid Mech.
,
455
, pp.
175
193
.10.1017/S0022112001007340
12.
Schneider
,
K.
,
Paget-Goy
,
M.
,
Verga
,
A.
, and
Farge
,
M.
,
2014
, “
Numerical Simulation of Flows Past Flat Plates Using Volume Penalization
,”
Comput. Appl. Math.
,
33
(
2
), pp.
481
495
.10.1007/s40314-013-0076-9
13.
Wang
,
L.
,
Ma
,
X.
,
Li
,
Z.
,
Wu
,
P.
, and
Wu
,
D.
,
2012
, “
Simulations of the Transient Flow Generated From a Started Flat Plate
,”
Chin J. Mech. Eng.
,
25
(
6
), pp.
1190
1197
.10.3901/CJME.2012.06.1190
14.
Xu
,
L.
, and
Nitsche
,
M.
,
2014
, “
Scaling Behaviour in Impulsively Started Viscous Flow Past a Finite Flat Plate
,”
J. Fluid Mech.
,
756
, pp.
689
715
.10.1017/jfm.2014.451
15.
Xu
,
L.
, and
Nitsche
,
M.
,
2015
, “
Start-Up Vortex Flow Past an Accelerated Flat Plate
,”
Phys. Fluids
,
27
(
3
), p.
033602
.10.1063/1.4913981
16.
Ringuette
,
M. J.
,
Milano
,
M.
, and
Gharib
,
M.
,
2007
, “
Role of the Tip Vortex in the Force Generation of Low-Aspect-Ratio Normal Flat Plates
,”
J. Fluid Mech.
,
581
, pp.
453
468
.10.1017/S0022112007005976
17.
Grift
,
E.
,
Vijayaragavan
,
N.
,
Tummers
,
M.
, and
Westerweel
,
J.
,
2019
, “
Drag Force on an Accelerating Submerged Plate
,”
J. Fluid Mech.
,
866
, pp.
369
398
.10.1017/jfm.2019.102
18.
Fernando
,
J. N.
, and
Rival
,
D. E.
,
2016
, “
On Vortex Evolution in the Wake of Axisymmetric and Non-Axisymmetric Low-Aspect-Ratio Accelerating Plates
,”
Phys. Fluids
,
28
(
1
), p.
017102
.10.1063/1.4938744
19.
Corkery
,
S. J.
,
Stevens
,
R. J.
, and
Babinsky
,
H.
,
2017
, “
Low Reynolds Number Surge Response of a Flat Plate Wing at 90 Degrees Incidence
,”
AIAA
Paper No. 2017-0330.10.2514/6.2017-0330
20.
Kim
,
D.
, and
Gharib
,
M.
,
2010
, “
Visualization of Three-Dimensional Vortex Dynamics and Fluid Transport in Translating Plates, Using Defocusing DPIV
,”
15th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July
5
8
.https://pdfs.semanticscholar.org/e765/07e9de6b74babeaff047fc3459b3309c06e4.pdf
21.
Kim
,
D.
, and
Gharib
,
M.
,
2011
, “
Flexibility Effects on Vortex Formation of Translating Plates
,”
J. Fluid Mech.
,
677
, pp.
255
271
.10.1017/jfm.2011.82
22.
DeVoria
,
A. C.
, and
Ringuette
,
M. J.
,
2012
, “
Vortex Formation and Saturation for Low-Aspect-Ratio Rotating Flat-Plate Fins
,”
Exp. Fluids
,
52
(
2
), pp.
441
462
.10.1007/s00348-011-1230-z
23.
Hua
,
R. N.
,
Zhu
,
L.
, and
Lu
,
X. Y.
,
2013
, “
Locomotion of a Flapping Flexible Plate
,”
Phys. Fluids
,
25
(
12
), p.
121901
.10.1063/1.4832857
24.
Kim
,
J.-T.
,
Jin
,
Y.
, and
Chamorro
,
L. P.
,
2019
, “
Dynamics of Flexible Plates and Flow Under Impulsive Oscillation
,”
J. Fluid Struct.
,
87
, pp.
319
333
.10.1016/j.jfluidstructs.2019.03.014
25.
Jin
,
Y.
,
Kim
,
J.-T.
,
Mao
,
Z.
, and
Chamorro
,
L.
,
2018
, “
On the Couple Dynamics of Wall-Mounted Flexible Plates in Tandem
,”
J. Fluid Mech.
,
852
, R2.10.1017/jfm.2018.580
26.
Petersen
,
M. J.
,
1982
, “
Dynamics of Ship Collisions
,”
Ocean Eng.
,
9
(
4
), pp.
295
329
.10.1016/0029-8018(82)90026-9
27.
Brennen
,
C.
,
1982
, “
A Review of Added Mass and Fluid Inertial Forces
,” Brennen (CE), Sierra Madre, CA, Report.
28.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, Berlin.
29.
Christensen
,
K. T.
, and
Adrian
,
R. J.
,
2002
, “
Measurement of Instantaneous Eulerian Acceleration Fields by Particle Image Velocimetry: Method and Accuracy
,”
Exp. Fluids
,
33
(
6
), pp.
759
769
.10.1007/s00348-002-0488-6
You do not currently have access to this content.