Abstract

The partially averaged Navier–Stokes (PANS) methodology is known to give improved performance over the traditional Reynolds-averaged Navier–Stokes (RANS) formulation at an affordable computational cost. Over the years, PANS has gained popularity in both industry and academia. In this work, we strive to improve the performance of the k–ε-based PANS methodology by formulating a low-Reynolds-number (LRN) k–ε model-based PANS closure. We have compared the PANS closure based on Launder-Sharma k–ε model (LSKE) with PANS closure based on the conventional two-layer k–ε model (TLKE) in the classical case of separated flow past a heated square cylinder at Reynolds number (Re) of 21,400. The PANS methodologies are compared on the basis of flow hydrodynamics, heat transfer rate, and computational time. These methodologies are compared with the benchmark experimental and direct numerical simulation (DNS) results. The PANS + LSKE methodology clearly outperforms the conventional PANS + TLKE methodology in predicting the flow hydrodynamics and is computationally much faster as well. Moreover, the performance of the LSKE model in conjunction with the PANS methodology is found to be comparable to the more recent models like the shear stress transport (SST)–k–ω and the k–ε–ζ–f model. In heat transfer aspects, the performance of LSKE (with Yap correction)-based closure is the best on the stagnation surface, while the LSKE (without Yap correction)-based closure performs comparably better on the lateral and rear surfaces.

References

References
1.
Girimaji
,
S. S.
,
2006
, “
Partially-Averaged Navier–Stokes Model for Turbulence: A Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation Bridging Method
,”
ASME J. Appl. Mech.
,
73
(
3
), pp.
413
421
.10.1115/1.2151207
2.
Schiestel
,
R.
, and
Dejoan
,
A.
,
2005
, “
Towards a New Partially Integrated Transport Model for Coarse Grid and Unsteady Turbulent Flow Simulations
,”
Theor. Comput. Fluid Dyn.
,
18
(
6
), pp.
443
468
.10.1007/s00162-004-0155-z
3.
Frendi
,
K.
,
Zreik
,
M.
, and
Tosh
,
A.
,
2006
, “
A Computational Study of the Unsteady Flow Past Tandem Cylinders
,”
AIAA
Paper No. 2006-3204.10.2514/6.2006-3204
4.
Lakshmipathy
,
S.
,
2006
, “
PANS Method of Turbulence: Simulation of High and Low Reynolds Number Flows Past a Circular Cylinder
,”
Ph.D. thesis
, Texas A&M University, College station, TX.https://oaktrust.library.tamu.edu/handle/1969.1/3338
5.
Lakshmipathy
,
S.
, and
Girimaji
,
S. S.
,
2007
, “
Extension of Boussinesq Turbulence Constitutive Relation for Bridging Methods
,”
J. Turbul.
, (
8
), p.
N31
.10.1080/14685240701420478
6.
Reyes
,
D. A.
,
2010
, “
Partially Averaged Navier–Stokes Turbulence Modeling: Investigation of Computational and Physical Closure Issues in Flow Past a Circular Cylinder
,”
Ph.D. thesis
, Texas A & M University, College station, TX.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2855/REYES-THESIS.pdf?sequence=1&isAllowed=y
7.
Lakshmipathy
,
S.
, and
Girimaji
,
S. S.
,
2010
, “
Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations: Flow Past a Circular Cylinder
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121202
.10.1115/1.4003154
8.
Lakshmipathy
,
S.
,
2010
, “
Partially Averaged Navier–Stokes Method for Turbulence Closures: Characterization of Fluctuations and Extension to Wall Bounded Flows
,”
Ph.D. thesis
, Texas A & M University, College station, TX.http://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-2009-05-722
9.
Basara
,
B.
,
Krajnovic
,
S.
,
Girimaji
,
S.
, and
Pavlovic
,
Z.
,
2011
, “
Near-Wall Formulation of the Partially Averaged Navier–Stokes Turbulence Model
,”
AIAA J.
,
49
(
12
), pp.
2627
2636
.10.2514/1.J050967
10.
Luo
,
D.
,
Yan
,
C.
,
Liu
,
H.
, and
Zhao
,
R.
,
2014
, “
Comparative Assessment of PANS and DES for Simulation of Flow Past a Circular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
134
, pp.
65
77
.10.1016/j.jweia.2014.08.014
11.
Pereira
,
F.
,
Vaz
,
G.
,
Eça
,
L.
, and
Girimaji
,
S.
,
2018
, “
Simulation of the Flow Around a Circular Cylinder at Re = 3900 With Partially-Averaged Navier–Stokes Equations
,”
Int. J. Heat Fluid Flow
,
69
, pp.
234
246
.10.1016/j.ijheatfluidflow.2017.11.001
12.
Pereira
,
F. S.
,
Eça
,
L.
,
Vaz
,
G.
, and
Girimaji
,
S. S.
,
2019
, “
On the Simulation of the Flow Around a Circular Cylinder at Re = 140,000
,”
Int. J. Heat Fluid Flow
,
76
, pp.
40
56
.10.1016/j.ijheatfluidflow.2019.01.007
13.
Barone
,
M.
,
2006
, “
Mesh-Independent Unsteady Turbulent Wake Simulations Using the PANS Model
,”
AIAA
Paper No. 2006-3742.10.2514/6.2006-3742
14.
Song
,
C.-S.
, and
Park
,
S.-O.
,
2009
, “
Numerical Simulation of Flow Past a Square Cylinder Using Partially-Averaged Navier–Stokes Model
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
1
), pp.
37
47
.10.1016/j.jweia.2008.11.004
15.
Jeong
,
E.
, and
Girimaji
,
S. S.
,
2010
, “
Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations—Flow Past a Square Cylinder
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121203
.10.1115/1.4003153
16.
Ranjan
,
P.
, and
Dewan
,
A.
,
2015
, “
Partially Averaged Navier–Stokes Simulation of Turbulent Heat Transfer From a Square Cylinder
,”
Int. J. Heat Mass Transfer
,
89
, pp.
251
266
.10.1016/j.ijheatmasstransfer.2015.05.029
17.
Ranjan
,
P.
, and
Dewan
,
A.
,
2016
, “
Study of Heat Transfer Over a Square Cylinder in Cross Flow Using Variable Resolution Modeling
,”
J. Appl. Fluid Mech.
,
9
(
3
), pp.
1367
1379
.http://web.iitd.ac.in/~adewan/Dewan_2016_JAFM_Pritanshu_PANS.pdf
18.
Ranjan
,
P.
, and
Dewan
,
A.
,
2017
, “
A PANS Study of Fluid Flow and Heat Transfer From a Square Cylinder Approaching a Plane Wall
,”
Int. J. Therm. Sci.
,
120
, pp.
321
336
.10.1016/j.ijthermalsci.2017.06.015
19.
Basara
,
B.
,
Pavlovic
,
Z.
, and
Girimaji
,
S.
,
2018
, “
A New Approach for the Calculation of the Cut-Off Resolution Parameter in Bridging Methods for Turbulent Flow Simulation
,”
Int. J. Heat Fluid Flow
,
74
, pp.
76
88
.10.1016/j.ijheatfluidflow.2018.09.011
20.
Saroha
,
S.
,
Sinha
,
S.
, and
Lakshmipathy
,
S.
,
2018
, “
Evaluation of Partially Averaged Navier–Stokes Method in Simulating Flow Past a Sphere
,”
J. Appl. Fluid Mech.
,
11
(
5
), pp.
1333
1348
.http://jafmonline.net/JournalArchive/download?file_ID=46627&issue_ID=250
21.
Basara
,
B.
,
2015
, “
Fluid Flow and Conjugate Heat Transfer in a Matrix of Surface-Mounted Cubes: A PANS Study
,”
Int. J. Heat Fluid Flow
,
51
, pp.
166
174
.10.1016/j.ijheatfluidflow.2014.10.012
22.
Krajnović
,
S.
,
Minelli
,
G.
, and
Basara
,
B.
,
2016
, “
Partially-Averaged Navier–Stokes Simulations of Two Bluff Body Flows
,”
Appl. Math. Comput.
,
272
, pp.
692
706
.10.1016/j.amc.2015.03.136
23.
Frendi
,
A.
,
Tosh
,
A.
, and
Girimaji
,
S.
,
2006
, “
Flow Past a Backward-Facing Step: Comparison of PANS, DES and URANS Results With Experiments
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
8
(
1
), pp.
23
38
.10.1080/15502280601006207
24.
Huang
,
R.
,
Luo
,
X.
,
Ji
,
B.
, and
Ji
,
Q.
,
2017
, “
Turbulent Flows Over a Backward Facing Step Simulated Using a Modified Partially Averaged Navier–Stokes Model
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
044501
.10.1115/1.4035114
25.
Krajnović
,
S.
,
Lárusson
,
R.
, and
Basara
,
B.
,
2012
, “
Superiority of PANS Compared to Les in Predicting a Rudimentary Landing Gear Flow With Affordable Meshes
,”
Int. J. Heat Fluid Flow
,
37
, pp.
109
122
.10.1016/j.ijheatfluidflow.2012.04.013
26.
Huang
,
B.
, and
Wang
,
G.-y.
,
2011
, “
Partially Averaged Navier–Stokes Method for Time-Dependent Turbulent Cavitating Flows
,”
J. Hydrodyn., Ser. B
,
23
(
1
), pp.
26
33
.10.1016/S1001-6058(10)60084-4
27.
Bin
,
J.
,
Xian-Wu
,
L.
,
Yu-Lin
,
W.
, and
Hong-Yuan
,
X.
,
2012
, “
Unsteady Cavitating Flow Around a Hydrofoil Simulated Using the Partially-Averaged Navier–Stokes Model
,”
Chin. Phys. Lett.
,
29
(
7
), p.
076401
.10.1088/0256-307X/29/7/076401
28.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Xu
,
H.
,
2012
, “
Partially-Averaged Navier–Stokes Method With Modified k–ε Model for Cavitating Flow Around a Marine Propeller in a Non-Uniform Wake
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6582
6588
.10.1016/j.ijheatmasstransfer.2012.06.065
29.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Duan
,
Y.
,
2013
, “
Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding Horse-Shoe Vortex Structure Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
51
, pp.
33
43
.10.1016/j.ijmultiphaseflow.2012.11.008
30.
Kumar
,
R.
, and
Dewan
,
A.
,
2015
, “
Partially-Averaged Navier–Stokes Method for Turbulent Thermal Plume
,”
Heat Mass Transfer
,
51
(
12
), pp.
1655
1667
.10.1007/s00231-015-1527-1
31.
Chen
,
H.
, and
Patel
,
V.
,
1988
, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
,
26
(
6
), pp.
641
648
.10.2514/3.9948
32.
Launder
,
B.
, and
Sharma
,
B.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
33.
Lam
,
C.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k-ε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
456
460
.10.1115/1.3240815
34.
Chien
,
K.-Y.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows With a Low-Reynolds-Number Turbulence Model
,”
AIAA J.
,
20
(
1
), pp.
33
38
.10.2514/3.51043
35.
Yap
,
C. R.
,
1987
, “
Turbulent Heat and Momentum Transfer in Recirculating and Impinging Flows
,”
Ph.D. thesis
, Manchester University, Manchester, UK.http://adsabs.harvard.edu/abs/1987PhDT........10Y
36.
Ma
,
J.
,
Peng
,
S.-H.
,
Davidson
,
L.
, and
Wang
,
F.
,
2011
, “
A Low Reynolds Number Variant of Partially-Averaged Navier–Stokes Model for Turbulence
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
652
669
.10.1016/j.ijheatfluidflow.2011.02.001
37.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2014
, “
A Partially-Averaged Navier–Stokes Model for the Simulation of Turbulent Swirling Flow With Vortex Breakdown
,”
Int. J. Heat Fluid Flow
,
50
, pp.
402
416
.10.1016/j.ijheatfluidflow.2014.10.005
38.
Verma
,
S.
, and
Dewan
,
A.
,
2018
, “
Deciphering the Flow Structure of Czochralski Melt Using Partially Averaged Navier–Stokes (PANS) Method
,”
Sādhanā
,
43
(
1
), p.
1
.10.1007/s12046-017-0766-x
39.
Chakraborty
,
K.
,
Saroha
,
S.
,
Sinha
,
S. S.
, and
Lakshmipathy
,
S.
,
2018
, “
Effect of Wall Treatment on the Performance of kε Model for Separated Flows
,”
Seventh International and 45th National Fluid Mechanics and Fluid Power Conference (FMFP)
, IIT Bombay, Mumbai, India, Dec. 10–12, Paper No.
428
.https://www.researchgate.net/profile/Krishnendu_Chakraborty6/publication/333667914_Effect_of_Wall_Treatment_on_the_Performance_of_k-epsilon_Model_for_Separated_Flows/links/5cfca23192851c874c599ed4/Effect-of-Wall-Treatment-on-the-Performance-of-k-epsilon-Model-for-Separated-Flows.pdf
40.
Chakraborty
,
K.
,
Saroha
,
S.
,
Sinha
,
S. S.
, and
Lakshmipathy
,
S.
,
2019
, “
An Openfoam Based Comparison of Near Wall-Modeling Techniques in Simulating Separated Flow Past a Square Cylinder
,”
Fourth Thermal and Fluids Engineering Conference (TFEC)
, American Society of Thermal and Fluids Engineers (ASTFE), Las Vegas, NV, Apr. 14–17, Paper No. 29987.
41.
Argyropoulos
,
C.
, and
Markatos
,
N.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Modell.
,
39
(
2
), pp.
693
732
.10.1016/j.apm.2014.07.001
42.
Saroha
,
S.
,
Sinha
,
S. S.
, and
Lakshmipathy
,
S.
,
2019
, “
Evaluation of PANS Method in Conjunction With Non-Linear Eddy Viscosity Closure Using Openfoam
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
3
), pp.
949
980
.10.1108/HFF-09-2018-0529
43.
Shih
,
T.-H.
,
Zhu
,
J.
, and
Lumley
,
J. L.
,
1993
, “
A Realizable Reynolds Stress Algebraic Equation Model
,” National Aeronautics and Space Administration, Washington, DC, Tecnical Memorandum 105993.
44.
Igarashi
,
T.
,
1985
, “
Heat Transfer From a Square Prism to an Air Stream
,”
Int. J. Heat Mass Transfer
,
28
(
1
), pp.
175
181
.10.1016/0017-9310(85)90019-5
45.
Lyn
,
D.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J.-H.
,
1995
, “
A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluid Mech.
,
304
, pp.
285
319
.10.1017/S0022112095004435
46.
Igarashi
,
T.
,
1984
, “
Characteristics of the Flow Around a Square Prism
,”
Bull. JSME
,
27
(
231
), pp.
1858
1865
.10.1299/jsme1958.27.1858
47.
Trias
,
F.
,
Gorobets
,
A.
, and
Oliva
,
A.
,
2015
, “
Turbulent Flow Around a Square Cylinder at Reynolds Number 22,000: A DNS Study
,”
Comput. Fluids
,
123
, pp.
87
98
.10.1016/j.compfluid.2015.09.013
48.
Germano
,
M.
,
1992
, “
Turbulence: The Filtering Approach
,”
J. Fluid Mech.
,
238
, pp.
325
336
.10.1017/S0022112092001733
49.
Boussinesq
,
J.
,
1877
,
Essai Sur la Théorie Des Eaux Courantes
,
Impr. nationale
.
50.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
51.
Cao
,
Y.
, and
Tamura
,
T.
,
2016
, “
Large-Eddy Simulations of Flow Past a Square Cylinder Using Structured and Unstructured Grids
,”
Comput. Fluids
,
137
, pp.
36
54
.10.1016/j.compfluid.2016.07.013
52.
Crippa
,
S.
,
2011
, “
Improvement of Unstructured Computational Fluid Dynamics Simulations Through Novel Mesh Generation Methodologies
,”
J. Aircr.
,
48
(
3
), pp.
1036
1044
.10.2514/1.C031219
53.
Nakayama
,
A.
, and
Vengadesan
,
S.
,
2002
, “
On the Influence of Numerical Schemes and Subgrid–Stress Models on Large Eddy Simulation of Turbulent Flow Past a Square Cylinder
,”
Int. J. Numer. Methods Fluids
,
38
(
3
), pp.
227
253
.10.1002/fld.214
54.
Mavriplis
,
D.
,
2007
, “
Results From the 3rd Drag Prediction Workshop Using the nsu3d Unstructured Mesh Solver
,”
AIAA
Paper No. 2007-256.10.2514/6.2007-256
55.
Nakamura
,
Y.
, and
Ohya
,
Y.
,
1984
, “
The Effects of Turbulence on the Mean Flow Past Two-Dimensional Rectangular Cylinders
,”
J. Fluid Mech.
,
149
(
1
), pp.
255
273
.10.1017/S0022112084002640
56.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the 1988 Summer Program
, Center for Turbulence Research, Stanford University, Stanford, CA, Dec. 1, pp.
193
208
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
57.
Long
,
Y.
,
Long
,
X.-P.
,
Ji
,
B.
,
Huai
,
W.-X.
, and
Qian
,
Z.-D.
,
2017
, “
Verification and Validation of Urans Simulations of the Turbulent Cavitating Flow Around the Hydrofoil
,”
J. Hydrodyn., Ser. B
,
29
(
4
), pp.
610
620
.10.1016/S1001-6058(16)60774-6
58.
Long
,
Y.
,
Long
,
X.
,
Ji
,
B.
, and
Xing
,
T.
,
2019
, “
Verification and Validation of Large Eddy Simulation of Attached Cavitating Flow Around a Clark-y Hydrofoil
,”
Int. J. Multiphase Flow
,
115
, pp.
93
107
.10.1016/j.ijmultiphaseflow.2019.03.026
You do not currently have access to this content.