Abstract

The proposition for molten salt and high-temperature gas-cooled reactors has increased the focus on the dynamics and physics in randomly packed pebble beds. Research is being conducted on the validity of these designs as a possible contestant for the fourth-generation nuclear power systems. A detailed understanding of the coolant flow behavior is required in order to ensure proper cooling of the reactor core during normal and accident conditions. In order to increase the understanding of the flow through these complex geometries and enhance the accuracy of lower-fidelity modeling, high-fidelity approaches such as direct numerical simulation (DNS) can be utilized. Nek5000, a spectral-element computational fluid dynamics (CFD) code, was used to develop DNS fluid flow data. The flow domain consisted of 147 pebbles enclosed by a bounding wall. In the work presented, the Reynolds numbers ranged from 430 to 1050 based on the pebble diameter and inlet velocity. Characteristics of the flow domain such as volume averaged porosity, axial porosity, and radial porosity were studied and compared with correlations available in the literature. Friction factors from the DNS results for all Reynolds numbers were compared with correlations in the literature. The first- and second-order statistics show good agreement with the available experimental data. Turbulence length scales were analyzed in the flow. Reynolds stress anisotropy was characterized by utilizing invariant analysis. Overall, the results of the analysis in this study provide deeper understanding of the flow behavior and the effect of the wall in packed beds.

References

1.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
2.
Reichelt
,
W.
,
1972
, “
Zur Berechnung des Druckverlustes Einphasig Durchstromter Kugel- und Zylinderschuttungen
,”
Chem. Ing. Tech.
,
44
(
18
), pp.
1068
1071
.10.1002/cite.330441806
3.
Ausschusses
,
K.
, and
KTA
,
1981
, “
Reactor Core Design of High-Temperature Gas-Cooled Reactors—Part 3: Loss Pressure Through Friction Pebble Bed Cores
,” Nuclear Safety Standards Commission, Salzgitter, Germany, Standard.
4.
Wirth
,
K.-E.
,
2010
, “
Pressure Drop in Fixed Beds
,”
VDI Heat Atlas
, Dusseldorf, Germany, pp.
1106
1110
.10.1007/978-3-540-77877-6
5.
Eisfeld
,
B.
, and
Schnitzlein
,
K.
,
2001
, “
The Influence of Confining Walls on the Pressure Drop in Packed Beds
,”
Chem. Eng. Sci.
,
56
(
14
), pp.
4321
4329
.10.1016/S0009-2509(00)00533-9
6.
Hassan
,
Y. A.
, and
Kang
,
C.
,
2012
, “
Pressure Drop in a Pebble Bed Reactor Under High Reynolds Number
,”
Nucl. Technol.
,
180
(
2
), pp.
159
173
.10.13182/NT12-A14631
7.
Nguyen
,
T.
,
Muyshondt
,
R.
,
Hassan
,
Y. A.
, and
Anand
,
N. K.
,
2019
, “
Experimental Investigation of Cross Flow Mixing in a Randomly Packed Bed and Streamwise Vortex Characteristics Using Particle Image Velocimetry and Proper Orthogonal Decomposition Analysis
,”
Phys. Fluids
,
31
(
2
), p.
025101
.10.1063/1.5079303
8.
Atmakidis
,
T.
, and
Kenig
,
E. Y.
,
2009
, “
CFD-Based Analysis of the Wall Effect on the Pressure Drop in Packed Beds With Moderate Tube/Particle Diameter Ratios in the Laminar Flow Regime
,”
Chem. Eng. J.
,
155
(
1–2
), pp.
404
410
.10.1016/j.cej.2009.07.057
9.
Fick
,
L.
,
Merzari
,
E.
, and
Hassan
,
Y.
,
2015
, “
Direct Numerical Simulation of the Flow Through a Structured Pebble Bed Near a Wall Boudary
,”
ASME
Paper No. AJKFluids2015-3701.10.1115/AJKFluids2015-3701
10.
Das
,
S.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
,
2017
, “
A DNS Study of Flow and Heat Transfer Through Slender Fixed-Bed Reactors Randomly Packed With Spherical Particles
,”
Chem. Eng. Sci.
,
160
, pp.
1
19
.10.1016/j.ces.2016.11.008
11.
Wood
,
B. D.
,
He
,
X.
, and
Apte
,
S. V.
,
2020
, “
Modeling Turbulent Flows in Porous Media
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
171
203
.10.1146/annurev-fluid-010719-060317
12.
Argonne National Laboratory
, 2017, “
Nek5000 Version 17.0
.,” Argonne National Laboratory, Lemont, IL, accessed Nov. 19, 2019, http://nek5000.mcs.anl.gov
13.
Offermans
,
N.
,
Marin
,
O.
,
Schanen
,
M.
,
Gong
,
J.
,
Fischer
,
P.
,
Schlatter
,
P.
,
Obabko
,
A.
,
Peplinksi
,
A.
,
Hutchinson
,
M.
, and
Merzari
,
E.
,
2016
, “
On the Strong Scaling of the Spectral Element Solver Nek5000 on Petascale Systems
,”
Exascale Applications and Software Conference
(
EASC '16
), Stockholm, Sweden, Apr. 26–29.10.1145/2938615.2938617
14.
Yildiz
,
M. A.
,
Yuan
,
H.
,
Merzari
,
E.
, and
Hassan
,
Y. A.
,
2019
, “
Numerical Simulation of Isothermal Flow Across Slant Five-Tube Bundle With Spectral Element Method Code Nek5000
,”
Nucl. Technol.
(epub).10.1080/00295450.2019.1626176
15.
Yildiz
,
M. A.
,
Merzari
,
E.
, and
Hassan
,
Y. A.
,
2019
, “
Spectral and Modal Analysis of the Flow in a Helical Coil Steam Generator Experiment with Large Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
80
, p.
108486
10.1016/j.ijheatfluidflow.2019.108486
16.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
17.
De Klerk
,
A.
,
2003
, “
Voidage Variation in Packed Beds at Small Column to Particle Diameter Ratio
,”
AIChE J.
,
49
(
8
), pp.
2022
2029
.10.1002/aic.690490812
18.
Dixon
,
A. G.
,
1988
, “
Correlations for Wall and Particle Shape Effects on Fixed Bed Bulk Voidage
,”
Can. J. Chem. Eng.
,
66
(
5
), pp.
705
708
.10.1002/cjce.5450660501
19.
Jeschar
,
R.
,
1964
, “
Druckverlust in Mehrkornschüttungen aus Kugeln
,”
Arch. Eisenhüttenwes.
,
35
(
2
), pp.
91
108
.10.1002/srin.196402300
20.
Lumley
,
J. L.
, and
Newman
,
G. R.
,
1977
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
82
(
1
), pp.
161
178
.10.1017/S0022112077000585
21.
Choi
,
K. S.
, and
Lumley
,
J. L.
,
2001
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
436
, pp.
59
84
.10.1017/S002211200100386X
22.
Hamilton
,
N.
,
Tutkun
,
M.
, and
Cal
,
R. B.
,
2017
, “
Anisotropic Character of Low-Order Turbulent Flow Descriptions Through the Proper Orthogonal Decomposition
,”
Phys. Rev. Fluids
,
2
(
1
), pp.
1
33
.10.1103/PhysRevFluids.2.014601
23.
Smalley
,
R.
,
Leonardi
,
S.
,
Antonia
,
R.
,
Djenidi
,
L.
, and
Orlandi
,
P.
,
2002
, “
Reynolds Stress Anisotropy of Turbulent Rough Wall Layers
,”
Exp. Fluids
,
33
(
1
), pp.
31
37
.10.1007/s00348-002-0466-z
24.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
You do not currently have access to this content.