Abstract

In this investigation, Lfd* and Δp in the entrance region of circular and parallel plate microchannels have been determined for 102Re104 and 104Kn0.2, employing the second-order velocity slip condition at the wall with C1=1 and 0C20.5. Results indicate that although local velocity slip at the wall is always higher than that for the fully developed section, local wall shear stress for higher Kn and C2 could be lower than its fully developed value, which is also more prominent for lower Re. Therefore, depending upon the operating condition, K(x) and Kfd could assume negative values, implying that pressure gradient in the developing region could even be less than that in the fully developed section. It has been further observed that both Lfd* and Kfd are characterized by the low and the high Re asymptotes, using which extremely accurate correlations have been proposed for both geometries.

References

1.
Ho
,
C. M.
, and
Tai
,
Y. C.
,
1998
, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
579
612
.10.1146/annurev.fluid.30.1.579
2.
Gad-el-Hak
,
M.
,
1999
, “
The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
121
(
1
), pp.
5
33
.10.1115/1.2822013
3.
Gad-el-Hak
,
M.
,
2001
, “
Flow Physics in MEMS
,”
Méc. Ind.
,
2
, pp.
313
341
.10.1016/S1296-2139(01)01112-5
4.
Karniadakis
,
G. E.
, and
Beskok
,
A.
,
2002
,
Micro Flows: Fundamentals and Simulation
,
Springer-Verlag
,
New York
.
5.
Karniadakis
,
G. E.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer-Verlag
,
New York
.
6.
Gad-el-Hak
,
M.
,
2006
, “
Gas and Liquid Transport at the Microscale
,”
Heat Transfer Eng.
,
27
(
4
), pp.
13
29
.10.1080/01457630500522305
7.
Colin
,
S.
,
2012
, “
Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020908
.10.1115/1.4005063
8.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.10.1115/1.4024354
9.
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2006
, “
Challenges in Modeling Gas-Phase Flow in Microchannels: From Slip to Transition
,”
Heat Transfer Eng.
,
27
(
4
), pp.
3
12
.10.1080/01457630500522271
10.
Tang
,
G. H.
,
Zhang
,
Y. H.
, and
Emerson
,
D. R.
,
2008
, “
Lattice Boltzmann Models for Nonequilibrium Gas Flows
,”
Phys. Rev. E
,
77
(
4
), p.
046701
.10.1103/PhysRevE.77.046701
11.
Schaaf
,
S. A.
, and
Chambre
,
P. L.
,
1961
,
Rarefied Gas Dynamics
,
Princeton University Press
,
Princeton, NJ
.
12.
Zhang
,
R.
,
Shan
,
X.
, and
Chen
,
H.
,
2006
, “
Efficient Kinetic Method for Fluid Simulation Beyond the Navier–Stokes Equation
,”
Phys. Rev. E
,
74
(
4
), p.
046703
.10.1103/PhysRevE.74.046703
13.
Zhang
,
Y. H.
,
Gu
,
X. J.
,
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2006
, “
Capturing Knudsen Layer Phenomena Using a Lattice Boltzmann Model
,”
Phys. Rev. E
,
74
(
4
), p.
046704
.10.1103/PhysRevE.74.046704
14.
Zhang
,
W.
,
Meng
,
G.
, and
Wei
,
X.
,
2012
, “
A Review on Slip Models for Gas Microflows
,”
Microfluid. Nanofluid.
,
13
(
6
), pp.
845
882
.10.1007/s10404-012-1012-9
15.
Arkilić
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
, “
Gaseous Slip Flow in Microchannels
,”
J. Microelectromech. Syst.
,
6
, pp.
167
174
.10.1109/84.585795
16.
Colin
,
S.
,
2005
, “
Rarefaction and Compressibility Effects on Steady and Transient Gas Flows in Microchannels
,”
Microfluid. Nanofluid.
,
1
(
3
), pp.
268
279
.10.1007/s10404-004-0002-y
17.
Dongari
,
N.
,
Agrawal
,
A.
, and
Agrawal
,
A.
,
2007
, “
Analytical Solution of Gaseous Slip Flow in Long Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3411
3421
.10.1016/j.ijheatmasstransfer.2007.01.048
18.
Tang
,
G. H.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2007
, “
Comparison of Gas Slip Models With Solutions of Linearized Boltzmann Equation and Direct Simulation of Monte Carlo Method
,”
Int. J. Mod. Phys. C
,
18
(
2
), pp.
203
216
.10.1142/S0129183107010383
19.
Tang
,
G. H.
,
Zhuo
,
L.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2007
, “
Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2282
2295
.10.1016/j.ijheatmasstransfer.2006.10.034
20.
Weng
,
H. C.
, and
Chen
,
C. K.
,
2008
, “
A Challenge in Navier–Stokes-Based Continuum Modeling: Maxwell-Burnett Slip Law
,”
Phys. Fluids
,
20
(
10
), p.
106101
.10.1063/1.2998451
21.
Cao
,
B. Y.
,
Sun
,
J.
,
Chen
,
M.
, and
Guo
,
Z. Y.
,
2009
, “
Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review
,”
Int. J. Mol. Sci.
,
10
(
11
), pp.
4638
4706
.10.3390/ijms10114638
22.
Chen
,
D.
, and
Bogy
,
D. B.
,
2010
, “
Comparisons of Slip-Corrected Reynolds Lubrication Equations for the Air Bearing Film in the Head-Disk Interface of Hard Disk Drives
,”
Tribol. Lett.
,
37
(
2
), pp.
191
201
.10.1007/s11249-009-9506-7
23.
Chakraborty
,
S.
, and
Durst
,
F.
,
2007
, “
Derivations of Extended Navier–Stokes Equations From Upscaled Molecular Transport Considerations for Compressible Ideal Gas Flows: Towards Extended Constitutive Forms
,”
Phys. Fluids
,
19
(
8
), p.
088104
.10.1063/1.2759531
24.
Dongari
,
N.
,
Sambasivam
,
R.
, and
Durst
,
F.
,
2009
, “
Extended Navier–Stokes Equations and Treatments of Micro-Channel Gas Flows
,”
J. Fluid Sci. Technol.
,
4
(
2
), pp.
454
467
.10.1299/jfst.4.454
25.
Dongari
,
N.
,
Durst
,
F.
, and
Chakraborty
,
S.
,
2010
, “
Predicting Microscale Gas Flows and Rarefaction Effects Through Extended Navier–Stokes-Fourier Equations From Phoretic Transport Considerations
,”
Microfluid. Nanofluid.
,
9
(
4–5
), pp.
831
846
.10.1007/s10404-010-0604-5
26.
Sambasivam
,
R.
,
2013
, “
Extended Navier–Stokes Equations: Derivations and Applications to Fluid Flow Problems
,” Ph.D. thesis, Friedrich Alexander Universität, Erlangen-Nürenberg, Germany.
27.
Dongari
,
N.
,
Zhang
,
Y. H.
, and
Reese
,
J. M.
,
2011
, “
Molecular Free Path Distribution in Rarefied Gases
,”
J. Phys. D
,
44
(
12
), p.
125502
.10.1088/0022-3727/44/12/125502
28.
Dongari
,
N.
,
Zhang
,
Y. H.
, and
Reese
,
J. M.
,
2011
, “
Modeling of Knudsen Layer Effects in Micro/Nanoscale Gas Flows
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071101
.10.1115/1.4004364
29.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1999
, “
A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
Microscale Thermophys. Eng.
,
3
, pp.
43
77
.10.1080/108939599199864
30.
Durst
,
F.
,
Ray
,
S.
,
Ünsal
,
B.
, and
Bayoumi
,
O. A.
,
2005
, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.10.1115/1.2063088
31.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
32.
Fox
,
R. W.
,
McDonald
,
A. T.
, and
Pritchard
,
P. J.
,
2010
,
Introduction to Fluid Mechanics
,
Wiley
,
New York
.
33.
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2001
, “
A Numerical Investigation of Low Reynolds Number Gaseous Slip Flow at the Entrance of Circular and Parallel Plate Micro-Channels
,”
Proceedings of ECCOMAS Computational Fluid Dynamics Conference
, Swansea, UK, Sept. 4–7.
34.
Ferrás
,
L.
,
Alfonso
,
A.
,
Alves
,
M.
,
Nóbrega
,
J.
, and
Pinho
,
F.
,
2012
, “
Development Length in Planar Channel Flows of Newtonian Fluids Under the Influence of Wall Slip
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
104503
.10.1115/1.4007383
35.
Kountouriotis
,
Z.
,
Philippou
,
M.
, and
Georgiou
,
G. C.
,
2016
, “
Development Lengths in Newtonian Poiseuille Flows With Wall Slip
,”
Appl. Math. Comput.
,
291
, pp.
98
114
.10.1016/j.amc.2016.06.041
36.
Chen
,
R. Y.
,
1973
, “
Flow in the Entrance Region at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
95
(
1
), pp.
153
158
.10.1115/1.3446948
37.
Dombrowski
,
N.
,
Foumeny
,
E. A.
,
Ookawara
,
S.
, and
Riza
,
A.
,
1993
, “
The Influence of Reynolds Number on the Entry Length and Pressure Drop for Laminar Pipe Flow
,”
Can. J. Chem. Eng.
,
71
(
3
), pp.
472
476
.10.1002/cjce.5450710320
38.
Knudsen
,
M.
,
1909
, “
Die Gesetze Der Molekularströmung Und Der Inneren Reibungsströmung Der Gase Durch Röhren
,”
Annu. Phys.
,
333
(
1
), pp.
75
130
.10.1002/andp.19093330106
39.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Advances in Heat Transfer, Supplement I: Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
40.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
Wiley
,
New York
.
41.
Ferziger
,
J. H.
, and
Perić
,
M.
,
1999
,
Computational Methods for Fluid Dynamics
,
Springer
,
Berlin
.
42.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow.
Hemisphere
,
Washington, DC
.
You do not currently have access to this content.