Abstract

The impacts of a plate on an asymmetric water wedge with constant and varying speeds are studied in this paper by considering the fluid to be incompressible, inviscid, and weightless; the effect of surface tension to be negligible; and the flow to be irrotational. A similarity solution for an impact with a constant speed is derived with the help of Wagner's function and the Schwarz–Christophel mapping technique and then numerically solved by employing an iterative method. An approximate solution is derived for the impact with a varying speed satisfying a power law in time based on the computational fluid dynamics (CFD) results with the volume of fluid (VOF) method. The approximate solution can provide an explicit expression for the pressure acting on the plate. The CFD validation shows that the pressure expression can also be applicable to other cases in which the speed of the plate is not a power law in time.

References

1.
Heymann
,
F.
,
1968
, “
On the Shock Wave Velocity and Impact Pressure in High-Speed Liquid-Solid Impact
,”
ASME. J. Basic Eng.
,
90
(
3
), pp.
400
402
.10.1115/1.3605114
2.
Cuomo
,
G.
,
Allsop
,
W.
, and
Takahashi
,
S.
,
2010
, “
Scaling Wave Impact Pressures on Vertical Walls
,”
Coastal Eng.
,
57
(
6
), pp.
604
609
.10.1016/j.coastaleng.2010.01.004
3.
Peregrine
,
D.
,
2003
, “
Water-Wave Impact on Walls
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
23
43
.10.1146/annurev.fluid.35.101101.161153
4.
Faltinsen
,
O. M.
,
Landrini
,
M.
, and
Greco
,
M.
,
2004
, “
Slamming in Marine Applications
,”
J. Eng. Math.
,
48
(
3/4
), pp.
187
217
.10.1023/B:engi.0000018188.68304.ae
5.
Faltinsen
,
O. M.
,
2005
,
Hydrodynamics of High-Speed Marine Vehicles
,
Cambridge University Press
, Cambridge, UK.
6.
Kapsenberg
,
G.
,
2011
, “
Slamming of Ships: Where Are We Now?
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
369
(
1947
), pp.
2892
2919
.10.1098/rsta.2011.0118
7.
Nielsen
,
K. B.
, and
Mayer
,
S.
,
2004
, “
Numerical Prediction of Green Water Incidents
,”
Ocean Eng.
,
31
(
3–4
), pp.
363
399
.10.1016/j.oceaneng.2003.06.001
8.
Guo
,
B.
,
Liu
,
P.
,
Qu
,
Q.
, and
Wang
,
J.
,
2013
, “
Effect of Pitch Angle on Initial Stage of a Transport Airplane Ditching
,”
Chin. J. Aeronaut.
,
26
(
1
), pp.
17
26
.10.1016/j.cja.2012.12.024
9.
Qu
,
Q.
,
Hu
,
M.
,
Guo
,
H.
,
Liu
,
P.
, and
Agarwal
,
R. K.
,
2015
,“
Study of Ditching Characteristics of Transport Aircraft by Global Moving Mesh Method
,”
J. Aircr.
,
52
(
5
), pp.
1550
1558
.10.2514/1.C032993
10.
Qu
,
Q.
,
Liu
,
C.
,
Liu
,
P.
,
Guo
,
B.
, and
Agarwal
,
R. K.
,
2016
, “
Numerical Simulation of Water-Landing Performance of a Regional Aircraft
,”
J. Aircr.
,
53
(
6
), pp.
1680
1689
.10.2514/1.C033686
11.
Iafrati
,
A.
,
2016
, “
Experimental Investigation of the Water Entry of a Rectangular Plate at High Horizontal Velocity
,”
J. Fluid Mech.
,
799
, pp.
637
672
.10.1017/jfm.2016.374
12.
Guo
,
B.
,
Qu
,
Q.
,
Liu
,
P.
,
Zhou
,
Z.
, and
Zhang
,
C.
,
2013
, “
Ditching Performance of Silent Aircraft Sax-40 in Hybrid Wing-Body Configuration
,”
Acta Aeronaut. Astronaut. Sin
,
34
(
11
), pp.
2443
2451
.10.7527/S1000-6893.2013.0179
13.
Okonkwo
,
P.
, and
Smith
,
H.
,
2016
, “
Review of Evolving Trends in Blended Wing Body Aircraft Design
,”
Prog. Aerosp. Sci.
,
82
, pp.
1
23
.10.1016/j.paerosci.2015.12.002
14.
Cumberbatch
,
E.
,
1960
, “
The Impact of a Water Wedge on a Wall
,”
J. Fluid Mech.
,
7
(
3
), pp.
353
374
.10.1017/S002211206000013X
15.
Zhang
,
S.
,
Yue
,
D. K.
, and
Tanizawa
,
K.
,
1996
, “
Simulation of Plunging Wave Impact on a Vertical Wall
,”
J. Fluid Mech.
,
327
, pp.
221
254
.10.1017/S002211209600852X
16.
Semenov
,
Y. A.
, and
Iafrati
,
A.
,
2006
, “
On the Nonlinear Water Entry Problem of Asymmetric Wedges
,”
J. Fluid Mech.
,
547
(
1
), pp.
231
256
.10.1017/S0022112005007329
17.
Wagner
,
H.
,
1932
, “
ÜberStoß-Und GleitvorgängeanDer Oberfläche Von Flüssigkeiten
,”
Z. Angew. Math. Mech.
,
12
(
4
), pp.
193
215
.10.1002/zamm.19320120402
18.
Dobrovol'Skaya
,
Z.
,
1969
, “
On Some Problems of Similarity Flow of Fluid With a Free Surface
,”
J. Fluid Mech.
,
36
(
4
), pp.
805
829
.10.1017/S0022112069001996
19.
Faltinsen
,
O. M.
, and
Semenov
,
Y. A.
,
2008
, “
Nonlinear Problem of Flat-Plate Entry Into an Incompressible Liquid
,”
J. Fluid Mech.
,
611
, pp.
151
173
.10.1017/S0022112008002735
20.
Semenov
,
Y. A.
, and
Wu
,
G. X.
,
2016
, “
Liquid Impact on a Permeable Solid Body
,”
Eur. J. Mech.-B/Fluids
,
57
, pp.
22
30
.10.1016/j.euromechflu.2016.02.004
21.
Duan
,
W.
,
Xu
,
G.
, and
Wu
,
G.
,
2009
, “
Similarity Solution of Oblique Impact of Wedge-Shaped Water Column on Wedged Coastal Structures
,”
Coastal Eng.
,
56
(
4
), pp.
400
407
.10.1016/j.coastaleng.2008.09.008
22.
Semenov
,
Y.
, and
Wu
,
G.
,
2013
, “
Asymmetric Impact Between Liquid and Solid Wedges
,”
Proc. R. Soc. A
,
469
(
2150
), p.
20120203
.10.1098/rspa.2012.0203
23.
Fraenkel
,
L.
, and
Keady
,
G.
,
2004
, “
On the Entry of a Wedge Into Water: The Thin Wedge and an All-Purpose Boundary-Layer Equation
,”
J. Eng. Math.
,
48
(
3/4
), pp.
219
252
.10.1023/B:engi.0000018157.35269.a2
24.
Zhao
,
R.
, and
Faltinsen
,
O.
,
1993
, “
Water Entry of Two-Dimensional Bodies
,”
J. Fluid Mech.
,
246
, pp.
593
612
.10.1017/S002211209300028X
25.
Wang
,
J.
, and
Faltinsen
,
O. M.
,
2017
, “
Improved Numerical Solution of Dobrovol'Skaya's Boundary Integral Equations on Similarity Flow for Uniform Symmetrical Entry of Wedges
,”
Appl. Ocean Res.
,
66
, pp.
23
31
.10.1016/j.apor.2017.05.006
26.
Gurevich
,
M. I.
,
1965
,
The Theory of Jets in an Ideal Fluid
, Nauka, Moscow, Russia (in Russian).
27.
Korobkin
,
A.
, and
Pukhnachov
,
V.
,
1988
, “
Initial Stage of Water Impact
,”
Annu. Rev. Fluid Mech.
,
20
(
1
), pp.
159
185
.10.1146/annurev.fl.20.010188.001111
28.
Wu
,
G.
,
2012
, “
Numerical Simulation for Water Entry of a Wedge at Varying Speed by a High Order Boundary Element Method
,”
J. Mar. Sci. Appl.
,
11
(
2
), pp.
143
149
.10.1007/s11804-012-1116-3
29.
Yettou
,
E.-M.
,
Desrochers
,
A.
, and
Champoux
,
Y.
,
2006
, “
Experimental Study on the Water Impact of a Symmetrical Wedge
,”
Fluid Dyn. Res.
,
38
(
1
), p.
47
.10.1016/j.fluiddyn.2005.09.003
30.
Zhao
,
R.
,
Faltinsen
,
O.
, and
Aarsnes
,
J.
,
1996
, “
Water Entry of Arbitrary Two-Dimensional Sections With and Without Flow Separation
,”
Proceedings of the 21st Symposium on Naval Hydrodynamics
, Trondheim, Norway, National Academy Press, Washington, DC, pp.
408
423
.
31.
Greenhow
,
M.
, and
Lin
,
W.-M.
,
1983
, “
Nonlinear-Free Surface Effects: Experiments and Theory
,” Department of Ocean Engineering, Massachusetts Insttitute of Technology, Cambridge, MA, Report No. 83–19.
32.
Yettou
,
E.-M.
,
Desrochers
,
A.
, and
Champoux
,
Y.
,
2007
, “
A New Analytical Model for Pressure Estimation of Symmetrical Water Impact of a Rigid Wedge at Variable Velocities
,”
J. Fluids Struct.
,
23
(
3
), pp.
501
522
.10.1016/j.jfluidstructs.2006.10.001
33.
Mei
,
X.
,
Liu
,
Y.
, and
Yue
,
D. K.
,
1999
, “
On the Water Impact of General Two-Dimensional Sections
,”
Appl. Ocean Res.
,
21
(
1
), pp.
1
15
.10.1016/S0141-1187(98)00034-0
34.
Shu
,
J.-J.
,
2004
, “
Slamming of a Breaking Wave on a Wall
,”
Phys. Rev. E
,
70
(
6
), p.
066306
.10.1103/PhysRevE.70.066306
35.
Shu
,
J.-J.
,
2004
, “
Impact of an Oblique Breaking Wave on a Wall
,”
Phys. Fluids
,
16
(
3
), pp.
610
614
.10.1063/1.1644145
36.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
37.
Muzaferija
,
S., 1996
, “
A Two-Fluid Navier-Stokes Solver to Simulate Water Entry
,”
Proceedings of 22nd Symposium on Naval Architecture,
Washington, DC, pp.
638
651
.
38.
Bodaghkhani
,
A.
,
Muzychka
,
Y.
, and
Colbourne
,
B.
,
2018
, “
Three-Dimensional Numerical and Experimental Simulation of Wave Run-Up Due to Wave Impact With a Vertical Surface
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081205
.10.1115/1.4039369
You do not currently have access to this content.