Abstract

A remarkable flow deviation phenomenon exists in the S-shaped discharge passage of a slanted axial-flow pumping system. In order to reveal the characteristics and development process of the deviating flow, numerical simulation was performed for a 15 deg slanted axial-flow pumping system, and the deviating flow was measured on an experimental rig. The details of the deviating flow in the S-shaped discharge passage were obtained. A kind of “unwinding” flow structure similar to that of DNA in biology is found in the S-shaped passage. The special structure is characterized by a “single strand” in which original helical streamlines are almost straightened. The bulk speed of the fluids on the “single strand” on the left side of the passage significantly increases while the swirling strength and the kinetic pressure ratio decrease. Large-scale Dean vortices at the passage bottom interact with high transverse energy gradient fluids at the passage top as water flows into the convex part of the S-shaped passage, which leads to the emergence of the “unwinding” structure. Reverse secondary flows further enlarge the scale of the Dean vortices as water flows into the concave part of the S-shaped passage, which results in the growth of the “unwinding” structure. With the development of the asymmetrical flow structure, an irreversible severe flow deviation problem naturally comes into being.

References

1.
Liu
,
C.
,
2015
, “
Researches and Developments of Axial-Flow Pump System
,”
Trans. Chin. Soc. Agric. Mach.
,
46
(
6
), pp.
49
59
.10.6041/j.issn.1000-1298.2015.06.008
2.
Wang
,
Z. W.
,
Peng
,
G. J.
,
Zhou
,
L. J.
, and
Hu
,
D. Y.
,
2010
, “
Hydraulic Performance of a Large Slanted Axial-Flow Pump
,”
Eng. Comput.
,
27
(
2
), pp.
243
256
.10.1108/02644401011022391
3.
Zhang
,
R.
, and
Chen
,
H. X.
,
2013
, “
Numerical Analysis of Cavitation Within Slanted Axial-Flow Pump
,”
J. Hydrodyn.
,
25
(
5
), pp.
663
672
.10.1016/S1001-6058(13)60411-4
4.
Yang
,
F.
, and
Liu
,
C.
,
2013
, “
Numerical and Experimental Investigation of Slanted Axial-Flow Pumping System
,”
J. Eng. Sci. Technol. Rev.
,
6
(
2
), pp.
62
68
.10.25103/jestr.062.14
5.
Kang
,
C.
,
Mao
,
N.
,
Pan
,
C.
, and
Zhou
,
Y.
,
2016
, “
Turbulent Flow Characteristics in an Axial-Flow Pump at Direct and Reverse Modes
,”
J. Appl. Sci. Eng.
,
19
(
4
), pp.
447
458
. 10.6180/jase.2016.19.4.08
6.
Jin
,
G. D.
,
Pan
,
Z. J.
,
Meng
,
J. B.
, and
Zhang
,
R.
,
2013
, “
Study of the Runaway Character of Slanted Axial-Flow Pump
,”
Chin. J. Hydrodyn.
,
28
(
5
), pp.
591
596
.
7.
Qiu
,
B. Y.
,
Feng
,
X. L.
,
Yuan
,
S. Q.
,
Lin
,
H. J.
, and
Huang
,
J. Y.
,
2005
, “
Analysis of Flow Deviation in Two-Channel Discharge Passage of a Large Pump Station
,”
J. Hydroelectric Eng
.,
24
(
6
), pp.
110
114
.10.3969/j.issn.1003-1243.2005.06.023
8.
Xie
,
L. H.
,
Wang
,
F. J.
,
He
,
C. L.
,
Su
,
S. L.
,
Zhang
,
S. C.
, and
Wang
,
B. L.
,
2019
, “
Experimental Investigation on Hydrodynamic Characteristics of a 15 Degree Slanted Axial-Flow Pump System
,”
J. Hydraulic Eng.
,
50
(
7
), pp.
798
805
.10.13243/j.cnki.slxb.20190124
9.
He
,
C. L.
,
Zhang
,
Y. Y.
,
Zhang
,
J. X.
, and
Zhang
,
C.
,
2018
, “Pump System Model Test Report on Technical Reform of Yanguan Drainage Pumping Station,”
China Water Beifang Investigation, Design and Research Co. Ltd
,
Tianjin, China
, Report No. XZ-2018-01.
10.
Liang
,
J. D.
,
Lu
,
L. G.
,
Liu
,
R. H.
, and
Wang
,
G.
,
2011
, “
Influence of Middle Division Pier on Hydraulic Performance in Pumping Station Outlet Conduit
,”
J. Drain. Irrig. Mach. Eng.
,
29
(
1
), pp.
77
81
.
11.
Qiu
,
B. Y.
,
Huang
,
J. Y.
,
Yuan
,
S. Q.
,
Lin
,
H. J.
, and
Feng
,
X. L.
,
2006
, “
Test Investigation on Hydraulic Losses in the Discharge Passage of an Axial-Flow Pump
,”
Chin. J. Mech. Eng.
,
42
(
5
), pp.
39
44
.10.3321/j.issn:0577-6686.2006.05.008
12.
Qiu
,
B. Y.
,
Huang
,
J. Y.
,
Lin
,
H. J.
,
Feng
,
X. L.
, and
Yuan
,
S. Q.
,
2005
, “
Experimental Investigation on Flow Field in Outlet Divergent Passage of Vertical Axial-Flow Pump
,”
Chin. J. Mech. Eng.
,
41
(
11
), pp.
115
120
.10.3901/JME.2005.11.115
13.
Qiu
,
B. Y.
,
Feng
,
X. L.
, and
Huang
,
J. Y.
,
2008
, “
Experimental Investigation on Flow Fields in Round Discharge Pipe of Axial-Flow Pump
,”
J. Drain. Irrig. Mach. Eng.
,
26
(
3
), pp.
1
5
.10.3969/j.issn.1674-8530.2008.03.001
14.
Anwer
,
M.
, and
So
,
R. M. C.
,
1993
, “
Swirling Turbulent Flow Through a Curved Pipe—Part I: Effect of Swirl and Bend Curvature
,”
Exp. Fluids
,
14
(
1–2
), pp.
85
96
.10.1007/BF00196992
15.
Anwer
,
M.
, and
So
,
R. M. C.
,
1993
, “
Swirling Turbulent Flow Through a Curved Pipe—Part II: Recovery From Swirl and Bend Curvature
,”
Exp. Fluids
,
14
(
1–2
), pp.
169
177
.10.1007/BF00189507
16.
Kalpakli
,
A.
, and
Örlü
,
R.
,
2013
, “
Turbulent Pipe Flow Downstream a 90 deg Pipe Bend With and Without Superimposed Swirl
,”
Int. J. Heat Fluid Flow
,
41
(
6
), pp.
103
111
.10.1016/j.ijheatfluidflow.2013.01.003
17.
Kalpakli
,
A.
,
Sattarzadeh
,
S.
, and
Örlü
,
R.
,
2015
, “
Combined Hot-Wire and PIV Measurements of a Swirling Turbulent Flow at the Exit of a 90 deg Pipe Bend
,”
J. Visualization
,
19
(
2
), pp.
1
13
.10.1007/s12650-015-0310-1
18.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), pp.
2305
2314
.10.1115/1.3070573
19.
Schneider
,
A.
,
Conrad
,
D.
, and
Böhle
,
M.
,
2015
, “
Lattice Boltzmann Simulation of the Flow Field in Pump Intakes—A New Approach
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031105
.10.1115/1.4028777
20.
Dou
,
H. S.
,
2006
, “
Mechanism of Flow Instability and Transition to Turbulence
,”
Int. J. Non-Linear Mech.
,
41
(
4
), pp.
512
517
.10.1016/j.ijnonlinmec.2005.12.002
21.
Liu
,
N.
,
Wang
,
Y. S.
, and
Zhang
,
G.
,
2006
, “Pump Model Test for South-to-North Water Diversion Project,”
China Water & Power Press
, Beijing,
China
.
22.
Durbin
,
P. A.
,
2018
, “
Some Recent Developments in Turbulence Closure Modeling
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
77
103
.10.1146/annurev-fluid-122316-045020
23.
Eltard
,
L. B.
, and
Fuhrman
,
D. R.
,
2018
, “
On the Over-Production of Turbulence Beneath Surface Waves in Reynolds-Averaged Navier-Stokes Models
,”
J. Fluid Mech.
,
853
, pp.
419
460
.10.1017/jfm.2018.577
24.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
25.
Yao
,
Z. F.
,
Wang
,
F. J.
,
Qu
,
L. X.
,
Xiao
,
R. F.
,
He
,
C. L.
, and
Wang
,
M.
,
2011
, “
Experimental Investigation of Time-Frequency Characteristics of Pressure Fluctuations in a Double-Suction Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101303
.10.1115/1.4004959
26.
Dong
,
X. R.
,
Gao
,
Y. S.
, and
Liu
,
C. Q.
,
2019
, “
New Normalized Rortex/Vortex Identification Method
,”
Phys. Fluids
,
31
(
1
), p.
011701
.10.1063/1.5066016
27.
Zhang
,
D. S.
,
Shi
,
W. D.
,
Pan
,
D. Z.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.10.1115/1.4030914
28.
Ilangovan
,
A.
,
Kay
,
C. W. M.
,
Roier
,
S.
,
El Mkami
,
H.
,
Salvadori
,
E.
,
Zechner
,
E. L.
,
Zanetti
,
G.
, and
Waksman
,
G.
,
2017
, “
Cryo-EM Structure of a Relaxase Reveals the Molecular Basis of DNA Unwinding During Bacterial Conjugation
,”
Cell
,
169
(
4
), pp.
708
721
.10.1016/j.cell.2017.04.010
29.
Loeff
,
L.
,
Brouns
,
S. J. J.
, and
Joo
,
C.
,
2018
, “
Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps
,”
Mol. Cell
,
70
(
3
), pp.
385
394
.10.1016/j.molcel.2018.03.031
You do not currently have access to this content.