Abstract

The pressure drop for steady uniform flows (UF) through low permeability porous media—packed bed of particles (balls and rods) and sand (K<107m2)—is predicted using the existing global Hazen-Dupuit-Darcy (HDD) hydraulic model, composed of the viscous and form drag terms. In this work, experiments are performed to generate pressure drop data for accelerated steady flows through porous media for a wide range of low permeability (109<K<107m2), low porosity (ϕ < 0.4) in the form drag-dominant (λ ≫ 1) flow regime. Using the data, the global spatial acceleration effect that arises due to channel cross section variation is shown to be unaccounted for in the existing global HDD model resulting in inaccurate prediction of pressure drop, with more than 80% error in such situations. A modified hydraulic model is developed, introducing geometric parameters in the drag terms in the existing hydraulic model, to account for the acceleration effects. By comparing the results with experimental data, the proposed modified hydraulic model is shown to predict the pressure drop for accelerated flows in porous media in the form drag-dominant regime, with less than 10% error.

References

1.
Nield
,
D. A.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
, 5th ed.,
Springer
,
New York
.
2.
Darcy
,
H.
,
1856
,
Les Fontaines Publiques de la Ville de Dijon
,
Dalmont
,
Paris, France
, p.
647
.
3.
Lage
,
J. L.
,
Krueger
,
P. S.
, and
Narasimhan
,
A.
,
2005
, “
Protocol for Measuring Permeability and Form Coefficient of Porous Media
,”
Phys. Fluids
,
17
(
8
), p.
088101
.10.1063/1.1979307
4.
Ozisik
,
M. N.
,
Trepp
,
C.
, and
Egolf
,
H.
,
1982
, “
Laminar Forced Convection in Converging or Diverging Planar Symmetric Ducts
,”
Int. J. Heat Mass Transfer
,
25
, pp.
1477
1480
.10.1016/0017-9310(82)90026-6
5.
Hu
,
Z.
, and
Shen
,
J.
,
1996
, “
Heat Transfer Enhancement in a Converging Passage With Discrete Ribs
,”
Int. J Heat Mass Transfer
,
39
(
8
), pp.
1719
1727
.10.1016/0017-9310(95)00199-9
6.
Rupp
,
J.
,
Carrotte
,
J.
, and
Macquisten
,
M.
,
2012
, “
The Use of Perforated Damping Liners in Aero Gas Turbine Combustion Systems
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071501
.10.1115/1.4005972
7.
Porter
,
S.
,
Saul
,
J.
,
Aleksandrova
,
S.
,
Medina
,
H.
, and
Benjamin
,
S.
,
2016
, “
Hybrid Flow Modelling Approach Applied to Automotive Catalysts
,”
Appl. Math. Modell.
,
40
(
19–20
), pp.
8435
8445
.10.1016/j.apm.2016.04.024
8.
Yamin
,
A. M.
,
Benjamin
,
S.
, and
Roberts
,
C.
,
2013
, “
Pulsating Flow in a Planar Diffuser Upstream of Automotive Catalyst Monoliths
,”
Int. J Heat Fluid Flow
,
40
, pp.
43
53
.10.1016/j.ijheatfluidflow.2013.01.014
9.
Thiruvengadam
,
M.
, and
Kumar
,
G. N. P.
,
1997
, “
Validity of Forchheimer Equation in Radial Flow Through Coarse Granular Media
,”
ASCE J. Eng. Mech.
,
123
(
7
), pp.
696
705
.10.1061/(ASCE)0733-9399(1997)123:7(696)
10.
Venkataraman
,
P.
, and
Rao
,
P. R. M.
,
2000
, “
Validation of Forchheimer's Law for Flow Through Porous Media With Converging Boundaries
,”
ASCE J. Hydraul. Eng.
,
126
(
1
), pp.
63
71
.10.1061/(ASCE)0733-9429(2000)126:1(63)
11.
Lage
,
J. L.
,
1998
, “
The Fundamental Theory of Flow Through Permeable Media From Darcy to Turbulence
,”
Transport Phenomena in Porous Media
,
D. B.
Ingham
and
I.
Pop
, eds.,
Pergamon
,
New York
, pp.
1
30
.
12.
Lage
,
J. L.
, and
Antohe
,
B. V.
,
2000
, “
Darcy's Experiments and the Deviation to Nonlinear Flow Regime
,”
ASME J. Fluids. Eng.
,
122
(
3
), pp.
619
625
.10.1115/1.1287722
13.
Wilson
,
L.
,
Narasimhan
,
A.
, and
Venkateshan
,
S. P.
,
2004
, “
Turbulent Flow Hydrodynamic Experiments in Near–Compact Heat Exchanger Models With Aligned Tubes
,”
ASME J. Fluids. Eng.
,
126
(
6
), pp.
990
996
.10.1115/1.1845553
14.
Narasimhan
,
A.
,
2012
,
Essentials of Heat and Fluid Flow in Porous Media
, 1st ed.,
CRC Press
,
New York
.
15.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw–Hill
,
New York
.
16.
Wang
,
L. B.
,
Tao
,
W. Q.
,
Wang
,
Q. W.
, and
Wong
,
T. T.
,
2001
, “
Experimental Study of Developing Turbulent Flow and Heat Transfer in Ribbed Convergent/Divergent Square Ducts
,”
Int. J. Heat Fluid Flow
,
22
(
6
), pp.
603
613
.10.1016/S0142-727X(01)00127-8
17.
Synolakis
,
C. E.
, and
Badeer
,
H. S.
,
1989
, “
On Combining the Bernoulli and Poiseuille Equation—A Plea to Authors of College Physics Texts
,”
AME. J. Phys.
,
57
(
11
), pp.
1013
1019
.10.1119/1.15812
18.
Otaru
,
A. J.
,
Morvan
,
H. P.
, and
Kennedy
,
A. R.
,
2019
, “
Airflow Measurement Across Negatively Infiltration Processed Porous Aluminum Structures
,”
AIChE J.
,
65
(
4
), pp.
1355
1364
.10.1002/aic.16523
19.
Oun
,
H.
, and
Kennedy
,
A. R.
,
2014
, “
Experimental Investigation of Pressure-Drop Characteristics Across Multi-Layer Porous Metal Structures
,”
J. Porous Mater.
,
21
(
6
), pp.
1133
1141
.10.1007/s10934-014-9863-y
20.
Nakanishi
,
K.
,
2016
, “
Porosity Measurement
,”
Handbook of Sol-Gel Science and Technology
,
L.
Klein
,
M.
Aparicio
, and
A.
Jitianu
, eds.,
Springer
,
Cham, Switzerland
, pp.
1
11
.
21.
Otaru
,
A. J.
, and
Kennedy
,
A. R.
,
2019
, “
Investigation of the Pressure Drop Across Packed Beds of Spherical Beads: Comparison of Empirical Models With Pore-Level Computational Fluid Dynamics Simulations
,”
ASME J. Fluids. Eng.
,
141
(
7
), p.
071305
.10.1115/1.4042957
22.
Otaru
,
A. J.
, and
Kennedy
,
A. R.
,
2016
, “
The Permeability of Virtual Macroporous Structures Generated by Sphere Packing Models: Comparison With Analytical Models
,”
Scr. Mater.
,
124
, pp.
30
33
.10.1016/j.scriptamat.2016.06.037
23.
Montillet
,
A.
,
2004
, “
Flow Through a Finite Packed Bed of Spheres: A Note on the Limit of Applicability of the Forchheimer–Type Equation
,”
ASME J. Fluids. Eng.
,
126
(
1
), pp.
139
143
.10.1115/1.1637928
24.
Kim
,
S.
, and
Kim
,
H.
,
2016
, “
A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts
,”
Int. J. Forecasting
,
32
(
3
), pp.
669
679
.10.1016/j.ijforecast.2015.12.003
You do not currently have access to this content.