Abstract

The U.S. Department of Energy National Energy Technology Laboratory's (NETL) 50 kWth chemical looping reactor (CLR) has an underperforming cyclone, which was designed using empirical correlations. To improve the performance of this cyclone using computational fluid dynamics (CFD)-based modeling simulations, four critical design parameters including the vortex tube radius and length, barrel radius, and the inlet width and height were optimized. NETL's open source multiphase flow with interphase exchange (MFiX) CFD code has been used to model a series of cyclones by systematically varying the geometric design parameters. To perform the optimization process, the surrogate modeling and sensitivity analysis followed by the optimization capability in nodeworks was used. The basic methodology for the process is to employ a statistical design of experiments (DOE) method to generate sampling simulations that fill the design space. Corresponding CFD models are then created, executed, and postprocessed. A response surface is created to characterize the relationship between input parameters and the quantities of interest (QoI). Finally, the CFD-surrogate is used by an optimization method to find the optimal design condition based on the objective and constraints prescribed. The resulting optimal cyclone has a larger diameter and longer vortex tube, a larger diameter barrel, and a taller and narrower solids inlet. The improved design has a predicted pressure drop 11 times lower than the original design while reducing the mass loss by a factor of 2.3.

References

References
1.
Bayham
,
S.
,
Straub
,
D.
, and
Weber
,
J.
,
2017
, “
Operation of the NETL Chemical Looping Reactor With Natural Gas and a Novel Copper-Iron Material
,” National Energy Technology Laboratory (NETL), Pittsburgh, PA and Morgantown, WV.
2.
U.S. Department of Energy National Energy Technology Laboratory
, 2019, “
MFiX
,” U.S. Department of Energy National Energy Technology Laboratory, Morgantown, WV, accessed Jan. 23, 2019, http://mfix.netl.doe.gov/mfix
3.
Snider
,
D. M.
,
2001
, “
An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows
,”
J. Comput. Phys.
,
170
(
2
), pp.
523
549
.10.1006/jcph.2001.6747
4.
U.S. Department of Energy National Energy Technology Laboratory
, 2019, “
Nodeworks
,” U.S. Department of Energy National Energy Technology Laboratory, Morgantown, WV, accessed Jan. 23, 2020, http://mfix.netl.doe.gov/nodeworks
5.
Benyahia
,
S.
,
Syamlal
,
M.
, and
O'Brien
,
T.
,
2007
, “
Study of the Ability of Multiphase Continuum Models to Predict Core-Annulus Flow
,”
AIChE J.
,
53
(
10
), pp.
2549
2568
.10.1002/aic.11276
6.
Verman
,
B.
,
Geurts
,
B. J.
,
Deen
,
N. G.
,
Kuipers
,
J. A. M.
, and
Kuerten
,
J. G. M.
,
2009
, “
Two- and Four-Way Coupled Euler–Lagrangian Large-Eddy Simulation of Turbulent Particle-Laden Channel Flow
,”
Flow, Turbul. Combust.
,
82
(
1
), pp. 47–71.10.1007/s10494-008-9173-z
7.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
4
,
Wiley
,
New York
.
8.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
.10.1198/TECH.2009.08040
9.
Fang
,
K. T.
, and
Ma
,
C. X.
,
2001
, “
Wrap-Around L2-Discrepancy of Random Sampling, Latin Hypercube, and Uniform Designs
,”
J. Complexity
,
17
(
4
), pp.
608
624
.10.1006/jcom.2001.0589
10.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
. http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
11.
Usher
,
W.
,
Herman
,
J.
,
Iwanaga
,
T.
,
Cellier
,
N.
,
Whealton
,
C.
,
Hadka
,
D.
,
Xantares
,
Rios
,
F.
,
Bernardoct
,
Mutel
,
C.
,
van Engelen
,
J.
,
Kranas
,
H.
, and
Antlord
,
2018
, “
SALib/SALib: SALib v1.2
,” Zenodo, accessed Jan. 23, 2020, 10.5281/zenodo.1509666
12.
Saltelli
,
A.
,
Ratto
,
M.
,
Terry
,
A.
,
Campolongo
,
F.
,
Cariboni
,
J.
, and
Gatelli
,
D.
,
2008
,
Global Sensitivity Analysis: The Primer
, Wiley, West Sussex, UK.
13.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
,
van der Walt
,
S. J.
,
Brett
,
M.
,
Wilson
,
J.
,
Millman
,
K. J.
,
Mayorov
,
N.
,
Nelson
,
A. R. J.
,
Jones
,
E.
,
Kern
,
R.
,
Larson
,
E.
,
Carey
,
C. J.
,
Polat
,
I.
,
Feng
,
Y.
,
Moore
,
E. W.
,
VanderPlas
,
J.
,
Laxalde
,
D.
,
Perktold
,
J.
,
Cimrman
,
R.
,
Henriksen
,
I.
,
Quintero
,
E. A.
,
Harris
,
C. R.
,
Archibald
,
A. M.
,
Ribeiro
,
A. H.
,
Pedregosa
,
F.
,
van Mulbregt
,
P.
, and SciPy 1. 0 Contributors, 2019, “SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python,” arXiv, Cornell University, Ithaca, NY, accessed Jan. 23, 2020, https://arxiv.org/abs/1907.10121
14.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
You do not currently have access to this content.