Abstract

Evaporation of sessile droplets is an important fundamental problem. The present three-dimensional numerical model considers various effects including vapor diffusion, buoyancy-driven flow, and evaporative cooling, with conjugate heat and mass transfer solved throughout the computational domain. Evaporation of a sessile water droplet with an initial volume of 3 μL is investigated on heated horizontal superhydrophobic substrates. A non-axis-symmetric rolling flow is presented inside the droplet rather than the axis-symmetric recirculation flow predicted by a two-dimensional axisymmetric model. This is because the axis-symmetric flow is not stable on heated superhydrophobic substrate and sensitive to any perturbations. The evaporative cooling along the droplet interface is observed, but the coolest point appears on the one side of the droplet instead of the droplet top owing to the rolling flow inside the droplet. Influence of relative humidity is also discussed and it indicates a stronger impact on substrates with relatively lower temperature. The present numerical study reveals the important underlying transport characteristics, which provides new insights into evaporation of water droplets resting on heated horizontal superhydrophobic substrates.

References

1.
Lim
,
T.
,
Han
,
S.
,
Chung
,
J.
,
Chung
,
J. T.
,
Ko
,
S.
, and
Grigoropoulos
,
C. P.
,
2009
, “
Experimental Study on Spreading and Evaporation of Inkjet Printed Pico-Liter Droplet on a Heated Substrate
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
431
441
.10.1016/j.ijheatmasstransfer.2008.05.028
2.
Singh
,
M.
,
Haverinen
,
H. M.
,
Dhagat
,
P.
, and
Jabbour
,
G. E.
,
2010
, “
Inkjet Printing—Process and Its Applications
,”
Adv. Mater.
,
22
(
6
), pp.
673
685
.10.1002/adma.200901141
3.
Bhardwaj
,
R.
,
Fang
,
X. H.
,
Somasundaran
,
P.
, and
Attinger
,
D.
,
2010
, “
Self-Assembly of Colloidal Particles From Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram
,”
Langmuir
,
26
(
11
), pp.
7833
7842
.10.1021/la9047227
4.
Deng
,
Y. J.
,
Chen
,
L.
,
Liu
,
Q.
,
Yu
,
J. P.
, and
Wang
,
H.
,
2016
, “
Nanoscale View of Dewetting and Coating on Partially Wetted Solids
,”
J. Phys. Chem. Lett.
,
7
(
10
), pp.
1763
1768
.10.1021/acs.jpclett.6b00620
5.
Tan
,
H. S.
,
Diddens
,
C.
,
Versluis
,
M.
,
Butt
,
H.-J.
,
Lohse
,
D.
, and
Zhang
,
X. H.
,
2017
, “
Self-Wrapping of an Ouzo Drop Induced by Evaporation on a Superamphiphobic Surface
,”
Soft Matter
,
13
(
15
), pp.
2749
2759
.10.1039/C6SM02860H
6.
Gomez-Rios
,
G. A.
,
Reyes-Garces
,
N.
,
Bojko
,
B.
, and
Pawliszyn
,
J.
,
2016
, “
Biocompatible Solid-Phase Microextraction Nanoelectrospray Ionization: An Unexploited Tool in Bioanalysis
,”
Anal. Chem.
,
88
, pp.
1259
1265
.10.1021/acs.analchem.5b03668
7.
Chang
,
S. T.
, and
Velev
,
O. D.
,
2006
, “
Evaporation-Induced Particle Microseparations Inside Droplets Floating on a Chip
,”
Langmuir
,
22
(
4
), pp.
1459
1468
.10.1021/la052695t
8.
Kachel
,
S.
,
Zhou
,
Y.
,
Scharfer
,
P.
,
Vrancic
,
C.
,
Petrich
,
W.
, and
Schabel
,
W.
,
2014
, “
Evaporation From Open Microchannel Grooves
,”
Lab Chip
,
14
(
4
), pp.
771
778
.10.1039/C3LC50892G
9.
Picknett
,
R. G.
, and
Bexon
,
R.
,
1977
, “
The Evaporation of Sessile or Pendant Drops in Still Air
,”
J. Colloid Interface Sci.
,
61
(
2
), pp.
336
350
.10.1016/0021-9797(77)90396-4
10.
Bourges-Monnier
,
C.
, and
Shanahan
,
M. E. R.
,
1995
, “
Influence of Evaporation on Contact Angle
,”
Langmuir
,
11
(
7
), pp.
2820
2829
.10.1021/la00007a076
11.
Hu
,
H.
, and
Larson
,
R. G.
,
2002
, “
Evaporation of a Sessile Droplet on a Substrate
,”
J. Phys. Chem. B
,
106
(
6
), pp.
1334
1344
.10.1021/jp0118322
12.
Deegan
,
R. R.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Witten
,
T. A.
,
2000
, “
Contact Line Deposits in an Evaporating Drop
,”
Phys. Rev. E
,
62
(
1
), pp.
756
765
.10.1103/PhysRevE.62.756
13.
Popov
,
Y. O.
,
2005
, “
Evaporative Deposition Patterns: Spatial Dimensions of the Deposit
,”
Phys. Rev. E
,
71
(
3
), p.
036313
.10.1103/PhysRevE.71.036313
14.
Sobac
,
B.
, and
Brutin
,
D.
,
2012
, “
Thermal Effects of the Substrate on Water Droplet Evaporation
,”
Phys. Rev. E
,
86
(
2
), p.
021602
.10.1103/PhysRevE.86.021602
15.
Dash
,
S.
, and
Garimella
,
S. V.
,
2013
, “
Droplet Evaporation Dynamics on a Superhydrophobic Surface With Negligible Hysteresis
,”
Langmuir
,
29
(
34
), pp.
10785
10795
.10.1021/la402784c
16.
David
,
S.
,
Sefiane
,
K.
, and
Tadris
,
L.
,
2007
, “
Experimental Investigation of the Effect of Thermal Properties of the Substrate in the Wetting and Evaporation of Sessile Drops
,”
Colloids Surf. A
,
298
(
1–2
), pp.
108
114
.10.1016/j.colsurfa.2006.12.018
17.
Dunn
,
G. J.
,
Wilson
,
S. K.
,
Duffy
,
B. R.
,
David
,
S.
, and
Sefiane
,
K.
,
2009
, “
The Strong Influence of Substrate Conductivity on Droplet Evaporation
,”
J. Fluid Mech.
,
623
, pp.
329
351
.10.1017/S0022112008005004
18.
Lopes
,
M. C.
,
Bonaccurso
,
E.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2013
, “
Influence of the Substrate Thermal Properties on Sessile Droplet Evaporation: Effect of Transient Heat Transfer
,”
Colloids Surf. A
,
432
, pp.
64
70
.10.1016/j.colsurfa.2013.04.017
19.
Still
,
M.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2014
, “
Experimental Investigation of Interfacial Temperature Evolution During Evaporation of Sessile Droplet
,”
Proceedings of 15th International Heat Transfer Conference
, Kyoto, Japan, Aug. 10–15, Paper No. IHTC15-9151.10.1615/IHTC15.mtr.009151
20.
Xu
,
X. F.
, and
Ma
,
L. R.
,
2015
, “
Analysis of the Effects of Evaporative Cooling on the Evaporation of Liquid Droplets Using a Combined Field Approach
,”
Sci. Rep.
,
5
(
1
), p.
8614
.10.1038/srep08614
21.
Wang
,
Y. L.
,
Ma
,
L. R.
,
Xu
,
X. F.
, and
Luo
,
J. B.
,
2016
, “
Expressions for the Evaporation of Sessile Liquid Droplets Incorporating the Evaporative Cooling Effect
,”
J. Colloid Interface Sci.
,
484
, pp.
291
297
.10.1016/j.jcis.2016.09.011
22.
Saada
,
M. A.
,
Chikh
,
S.
, and
Tadrist
,
L.
,
2010
, “
Numerical Investigation of Heat and Mass Transfer of an Evaporating Sessile Drop on a Horizontal Surface
,”
Phys. Fluids
,
22
, p.
112115
.10.1063/1.3488676
23.
Carle
,
F.
,
Sobac
,
B.
, and
Brutin
,
D.
,
2013
, “
Experimental Evidence of the Atmospheric Convective Transport Contribution to Sessile Droplet Evaporation
,”
Appl. Phys. Lett.
,
102
(
6
), p.
061603
.10.1063/1.4792058
24.
Pan
,
Z. H.
,
Dash
,
S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2013
, “
Assessment of Water Droplet Evaporation Mechanisms on Hydrophobic and Superhydrophobic Substrates
,”
Langmuir
,
29
(
51
), pp.
15831
15841
.10.1021/la4045286
25.
Pan
,
Z. H.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Influence of Surface Wettability on Transport Mechanisms Governing Water Droplet Evaporation
,”
Langmuir
,
30
(
32
), pp.
9726
9730
.10.1021/la501931x
26.
Hu
,
H.
, and
Larson
,
R. G.
,
2006
, “
Marangoni Effect Reverses Coffee-Ring Depositions
,”
J. Phys. Chem. B
,
110
(
14
), pp.
7090
7094
.10.1021/jp0609232
27.
Ristenpart
,
W. D.
,
Kim
,
P. G.
,
Domingues
,
C.
,
Wan
,
J.
, and
Stone
,
H. A.
,
2007
, “
Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops
,”
Phys. Rev. Lett.
,
99
(
23
), p.
234502
.10.1103/PhysRevLett.99.234502
28.
Tapan
,
K. P.
, and
Pradipta
,
K. P.
,
2017
, “
Evaporation Induced Natural Convection Inside a Droplet of Aqueous Solution Placed on a Superhydrophobic Surface
,”
Colloids Surf. A
,
530
, pp.
1
12
.10.1016/j.colsurfa.2017.07.034
29.
Saenz
,
P. J.
,
Sefiane
,
K.
,
Kim
,
J.
,
Matar
,
O. K.
, and
Valluri
,
P.
,
2015
, “
Evaporation of Sessile Drops: A Three-Dimensional Approach
,”
J. Fluid Mech.
,
772
, pp.
705
739
.10.1017/jfm.2015.224
30.
Yang
,
Y.
,
Zhou
,
L. P.
,
Du
,
X. Z.
, and
Yang
,
Y. P.
,
2018
, “
Fluid Flow and Thin-Film Evolution Near the Triple Line During Droplet Evaporation of Self-Rewetting Fluids
,”
Langmuir
,
34
(
13
), pp.
3853
3863
.10.1021/acs.langmuir.8b00170
31.
Wang
,
H.
,
2019
, “
From Contact Line Structures to Wetting Dynamics
,”
Langmuir
,
35
(
32
), pp.
10233
10245
.10.1021/acs.langmuir.9b00294
32.
Volkov
,
R. S.
, and
Strizhak
,
P. A.
,
2017
, “
Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature
,”
Appl. Therm. Eng.
,
127
, pp.
141
156
.10.1016/j.applthermaleng.2017.08.040
33.
Jonsson-Niedziolka
,
M.
,
Lapierre
,
F.
,
Coffinier
,
Y.
,
Parry
,
S. J.
,
Zoueshtiagh
,
F.
,
Foat
,
T.
,
Thomy
,
V.
, and
Boukherroub
,
R.
,
2011
, “
EWOD Driven Cleaning of Bioparticles on Hydrophobic and Superhydrophobic Surfaces
,”
Lab a Chip
,
11
, pp.
490
496
.10.1039/C0LC00203H
34.
Lee
,
J.
,
Hwang
,
S.-H.
,
Yoon
,
S.-S.
, and
Khang
,
D.-Y.
,
2019
, “
Evaporation Characteristics of Water Droplets in Cassie, Wenzel, and Mixed States on Superhydrophobic Pillared Si Surface
,”
Colloids Surf. A
,
562
, pp.
304
309
.10.1016/j.colsurfa.2018.11.049
35.
McHale
,
G.
,
Aqil
,
S.
,
Shirtcliffe
,
N. J.
,
Newton
,
M. I.
, and
Erbil
,
H. Y.
,
2005
, “
Analysis of Droplet Evaporation on a Superhydrophobic Surface
,”
Langmuir
,
21
(
24
), pp.
11053
11060
.10.1021/la0518795
36.
Dash
,
S.
,
Kumari
,
N.
, and
Garimella
,
S. V.
,
2011
, “
Characterization of Ultrahydrophobic Hierarchical Surfaces Fabricated Using a Single-Step Fabrication Methodology
,”
J. Micromech. Microeng.
,
21
(
10
), p.
105012
.10.1088/0960-1317/21/10/105012
37.
Dash
,
S.
, and
Garimella
,
S. V.
,
2014
, “
Droplet Evaporation on Heated Hydrophobic and Superhydrophobic Surfaces
,”
Phys. Rev. E
,
89
(
4
), p.
042402
.10.1103/PhysRevE.89.042402
38.
Dash
,
S.
,
Chandramohan
,
A.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Buoyancy-Induced on-the-Spot Mixing in Droplets Evaporating on Nonwetting Surfaces
,”
Phys. Rev. E
,
90
(
6
), p.
062407
.10.1103/PhysRevE.90.062407
39.
Gleason
,
K.
,
Voota
,
H.
, and
Putnam
,
S. A.
,
2016
, “
Steady-State Droplet Evaporation: Contact Angle Influence on the Evaporation Efficiency
,”
Int. J. Heat Mass Transfer
,
101
, pp.
418
426
.10.1016/j.ijheatmasstransfer.2016.04.075
40.
Hanneke
,
G.
,
Alvaro
,
G. M.
,
Hrudya
,
N.
,
Arie
,
V. H.
,
Leon
,
L.
,
Jacco
,
H. S.
, and
Detlef
,
L.
,
2011
, “
How Water Droplets Evaporate on a Superhydrophobic Substrate
,”
Phys. Rev. E
,
83
, p.
026306
.10.1103/PhysRevE.83.026306
41.
Hu
,
H.
, and
Larson
,
R. G.
,
2005
, “
Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet
,”
Langmuir
,
21
(
9
), pp.
3972
3980
.10.1021/la0475270
42.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2018
, “
NIST Chemistry WebBook
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Jan. 8, 2020, https://doi.org/10.18434/T4D303
43.
Chandramohan
,
A.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2017
, “
Spatiotemporal Infrared Measurement of Interface Temperatures During Water Droplet Evaporation on a Nonwetting Substrate
,”
Appl. Phys. Lett.
,
110
(
4
), p.
041605
.10.1063/1.4975003
You do not currently have access to this content.