Abstract

Francis turbines are often used for generating hydroelectric power, but their performance characteristics significantly depend on the operating conditions. In particular, interblade vortices in the passages between runner blades can occur at low flowrates, which can degrade performance, and increase vibrations and instability during operation. In a previous study, we showed that the hydraulic performance and flow characteristics depend on the flow passage area of runner blades under low-flowrate conditions. Under such operating conditions, the runner blade thickness can affect the interblade vortex characteristics, and in turn, affect the performance of the turbine. In this study, we investigated the effect of runner blade thicknesses in the presence of interblade vortices under low flowrates; steady- and unsteady-state Reynolds-averaged Navier–Stokes equations were solved using a shear stress transport as a turbulence model. The interblade vortices were described well at the near leading and trailing edges near the hub. These vortex regions showed flow separation and stagnation flow, and the interblade vortex characteristics were dependent on the high-magnitude unsteady pressures at the low-frequency region. For the same guide vane opening, at lower flowrates, higher blockage ratios reduced interblade vortex formation and unsteady pressure.

References

1.
 Mirae Industry Research,
2018
, “Analysis of Domestic and Overseas Issues and Prospects for Core Business Market by Renewable Energy Industry,”
Mirae Industry Research Publishing
, Seoul, South Korea (in Korean).
2.
Jeon
,
J. H.
,
Byeon
,
S. S.
,
Choi
,
Y. C.
,
Park
,
J. S.
, and
Kim
,
Y. J.
,
2013
, “
Hydraulic Performance of Francis Turbine With Various Discharge Angles
,”
KSFM J. Fluid Mach.
,
16
(
4
), pp.
10
14 (
in Korean).10.5293/kfma.2013.16.4.010
3.
Yamamoto
,
K.
,
Müller
,
A.
,
Favrel
,
A.
, and
Avellan
,
F.
,
2017
, “
Experimental Evidence of Inter-Blade Cavitation Vortex Development in Francis Turbines at Deep Part Load Condition
,”
Exp. Fluids
,
58
(
10
), p.
142
.10.1007/s00348-017-2421-z
4.
Kim
,
S. J.
,
Choi
,
Y. S.
,
Cho
,
Y.
,
Choi
,
J. W.
, and
Kim
,
J. H.
,
2019
, “
Effect of Blade Thickness on the Hydraulic Performance of a Francis Hydro Turbine Model
,”
Renew. Energy
,
134
, pp.
807
817
.10.1016/j.renene.2018.11.066
5.
Zuo
,
Z. G.
,
Liu
,
S. H.
,
Liu
,
D. M.
,
Qin
,
D. Q.
, and
Wu
,
Y. L.
,
2015
, “
Numerical Analyses of Pressure Fluctuations Induced by Interblade Vortices in a Model Francis Turbine
,”
J. Hydrodyn.
,
27
(
4
), pp.
513
521
.10.1016/S1001-6058(15)60511-X
6.
Wack
,
J.
, and
Riedelbauch
,
S.
,
2015
, “
Numerical Simulations of the Cavitation Phenomena in a Francis Turbine at Deep Part Load Conditions
,”
J. Phys.: Conf. Ser.
,
656
(
1
), p.
012074
.10.1088/1742-6596/656/1/012074
7.
Liu
,
M.
,
Zhou
,
L.
,
Wang
,
Z.
,
Liu
,
D.
, and
Zhao
,
Y.
,
2016
, “
Investigation of Channel Vortices in Francis Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
(
8
), p.
082003
.10.1088/1755-1315/49/8/082003
8.
Gong
,
R. Z.
,
Wang
,
H. G.
,
Yao
,
Y.
,
Shu
,
L. F.
, and
Huang
,
Y. J.
,
2012
, “
Numerical Simulation of Pressure Fluctuation in 1000 MW Francis Turbine Under Small Opening Condition
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
062038
.10.1088/1755-1315/15/6/062038
9.
Yexiang
,
X.
,
Zhengwei
,
W.
,
Zongguo
,
Y.
, and
Jin
,
Z.
,
2010
, “
Experimental and Numerical Analysis of Pressure Pulses Characteristics in a Francis Turbine With Partial Load
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p.
012023
.10.1088/1755-1315/12/1/012023
10.
International Electrotechnical Commission
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,”
International Electrotechnical Commission
, Geneva, Switzerland, Standard No.
IEC 60193
.https://infostore.saiglobal.com/preview/98687781138.pdf?sku=872218_SAIG_NSAI_NSAI_2073849
11.
Teodor
,
M.
,
2012
, “
Impeller Design Using CAD Techniques and Conformal Mapping Method
,”
Centrifugal Pumps
,
IntechOpen, London, UK
. 10.5772/26595
12.
 
ANSYS
,
2017
, “
ANSYS CFX-Solver Theory Guide
,” ANSYS CFX-18.2, ANSYS, Canonsburg, PA.
13.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
, May 30–June 4, p.
152
.https://www.researchgate.net/profile/Philip_Zwart/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics/links/5c73ee9e458515831f6e3d5f/A-two-phase-flow-model-for-predicting-cavitation-dynamics.pdf
14.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
15.
Bardina
,
J.
,
Huang
,
P.
, and
Coakley
,
T.
,
1997
, “
Turbulence Modeling Validation
,”
28th Fluid Dynamics Conference
, Snowmass Village, CO, June 29–July 2, p.
2121
.10.2514/6.1997-2121
16.
Feng
,
J.
,
Luo
,
X.
,
Zhu
,
G.
, and
Wu
,
G.
,
2017
, “
Investigation on Disk Friction Loss and Leakage Effect on Performance in a Francis Model Turbine
,”
Adv. Mech. Eng.
,
9
(
8
), pp.
1
10
.10.1177/1687814017723792
17.
Yamamoto
,
K.
,
Müller
,
A.
,
Favrel
,
A.
, and
Avellan
,
F.
,
2019
, “
Physical Mechanism of Inter-Blade Vortex Development at Deep Part Load Operation of a Francis Turbine
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111113
.10.1115/1.4043989
18.
 
Korea Agency for Infrastructure Technology Advancement
,
2017
, “
Report Development of Construction Technology for Medium Sized Hydropower Plant
,” Korea Agency for Infrastructure Technology Advancement, Gyeonggi-do, South Korea, Report No. 17IFIP-B128598-01.
19.
Luo
,
X. W.
,
Ji
,
B.
, and
Tsujimoto
,
Y.
,
2016
, “
A Review of Cavitation in Hydraulic Machinery
,”
J. Hydrodyn.
,
28
(
3
), pp.
335
358
.10.1016/S1001-6058(16)60638-8
20.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
21.
Celebioglu
,
K.
,
Altintas
,
B.
,
Aradag
,
S.
, and
Tascioglu
,
Y.
,
2017
, “
Numerical Research of Cavitation on Francis Turbine Runners
,”
Int. J. Hydrogen Energy
,
42
(
28
), pp.
17771
17781
.10.1016/j.ijhydene.2017.03.180
You do not currently have access to this content.