Abstract

Tip clearance is a crucial aspect of turbomachines in terms of aerodynamic and thermal performance. A gap between the blade tip surface and the stationary casing must be maintained to allow the relative motion of the blade. The leakage flow through the tip gap measurably reduces turbine performance and causes high thermal loads near the blade tip region. Several studies focused on the tip leakage flow to clarify the flow-physics in the past. The “squealer” design is one of the most common designs to reduce the adverse effects of tip leakage flow. In this paper, a genetic-algorithm-based optimization approach was applied to the conventional squealer tip design to enhance aerothermal performance. A multi-objective optimization method integrated with a meta-model was utilized to determine the optimum squealer geometry. Squealer height and width represent the design parameters which are aimed to be optimized. The objective functions for the genetic-algorithm-based optimization are the total pressure loss coefficient and Nusselt number calculated over the blade tip surface. The initial database is then enlarged iteratively using a coarse-to-fine approach to improve the prediction capability of the meta-models used. The procedure ends once the prediction errors are smaller than a prescribed level. This study indicates that squealer height and width have complex effects on the aerothermal performance, and optimization study allows to determine the optimum squealer dimensions.

References

References
1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
2.
Azad
,
G. S.
,
Han
,
J.-C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
452
459
.10.1115/1.1471523
3.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.10.1115/1.2929188
4.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.10.1115/1.2950068
5.
Schabowski
,
Z.
, and
Hodson
,
H.
,
2013
, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglets and Squealers
,”
ASME J. Turbomach.
,
136
(
4
), p.
041001
.10.1115/1.4024677
6.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.10.1115/1.2162183
7.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.10.1115/1.3262162
8.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.10.1115/1.3262264
9.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics—Part I: Effect of Tip Clearance Height
,”
ASME J. Turbomach.
,
123
(
2
), pp.
314
323
.10.1115/1.1368881
10.
Lakshminarayana
,
B.
,
1995
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
.
11.
Lee
,
S. W.
, and
Kim
,
S. U.
,
2010
, “
Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison With Plane Tip Results—Part 1: Tip Gap Flow Structure
,”
Exp. Fluids
,
49
(
5
), pp.
1039
1051
.10.1007/s00348-010-0848-6
12.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1998
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
120
(
4
), pp.
753
759
.10.1115/1.2841786
13.
Camci
,
C.
,
Dey
,
D.
, and
Kavurmacioglu
,
L.
,
2005
, “
Aerodynamics of Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage
,”
ASME J. Turbomach.
,
127
(
1
), pp.
14
24
.10.1115/1.1791279
14.
Kavurmacioglu
,
L.
,
Debashis
,
D.
, and
Camci
,
C.
,
2007
, “
Aerodynamic Character of Partial Squealer Tip Arrangements in an Axial Flow Turbine—Part II: Detailed Numerical Aerodynamic Field Visualisations Via Three Dimensional Viscous Flow Simulations Around a Partial Squealer Tip
,”
Prog. Comput. Fluid Dyn.
,
7
(
7
), pp.
374
386
.10.1504/PCFD.2007.014960
15.
Maral
,
H.
,
Senel
,
C. B.
, and
Kavurmacioglu
,
L.
,
2016
, “
A Parametric and Computational Aerothermal Investigation of Squealer Tip Geometry in an Axial Turbine: A Parametric Approach Suitable for Future Advanced Tip Carving Optimizations
,”
ASME
Paper No.
GT2016-58107. 10.1115/GT2016-58107
16.
Senel
,
C. B.
,
Maral
,
H.
,
Kavurmacioglu
,
L. A.
, and
Camci
,
C.
,
2018
, “
An Aerothermal Study of the Influence of Squealer Width and Height Near a HP Turbine Blade
,”
Int. J. Heat Mass Transfer
,
120
, pp.
18
32
.10.1016/j.ijheatmasstransfer.2017.12.017
17.
Deveci
,
K.
,
Maral
,
H.
,
Senel
,
C. B.
,
Alpman
,
E.
,
Kavurmacioglu
,
L.
, and
Camci
,
C.
,
2018
, “
Aerothermal Optimization of Squealer Geometry in Axial Flow Turbines Using Genetic Algorithm
,”
J. Therm. Eng.
,
4
(
3
), pp. 1896–1911.10.18186/journal-of-thermalengineering.408701
18.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
19.
Chang
,
C.-C.
, and
Lin
,
C.-J.
,
2011
, “
{LIBSVM}: a Library for Support Vector Machines
,”
ACM Trans. Intell. Syst. Technol.
,
2
(
3
), p.
1
.10.1145/1961189.1961199
20.
Zhou
,
C.
, and
Hodson
,
H.
,
2012
, “
Squealer Geometry Effects on Aerothermal Performance of Tip-Leakage Flow of Cavity Tips
,”
J. Propul. Power
,
28
(
3
), pp.
556
567
.10.2514/1.B34254
21.
Turgut
,
Ö. H.
, and
Camci
,
C.
,
2016
, “
Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051103
.10.1115/1.4031879
22.
Camci
,
C.
,
2004
, “
A Turbine Research Facility to Study Tip Desensitization Including Cooling Flows
,”
Turbine Blade Tip Design and Tip Clearance Treatment (VKI Lecture Series)
, Rhode Saint Genese, Belgium, pp.
1
26
.
23.
Ameri
,
A. A.
, and
Bunker
,
R. S.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine—Part 2: Simulation Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
272
277
.10.1115/1.555444
24.
Liu
,
L.
,
2005
,
Could Enough Samples Be More Important Than Better Designs for Computer Experiments?
38th Annual Symposium on Simulation
, Washington, DC, Apr. 4–6.10.1109/ANSS.2005.17
25.
Crombecq
,
K.
,
Laermans
,
E.
, and
Dhaene
,
T.
,
2011
, “
Efficient Space-Filling and Non-Collapsing Sequential Design Strategies for Simulation-Based Modeling
,”
Eur. J. Oper. Res.
,
214
(
3
), pp.
683
696
.10.1016/j.ejor.2011.05.032
26.
Lehmensiek
,
R.
,
Meyer
,
P.
, and
Müller
,
M.
,
2002
, “
Adaptive Sampling Applied to Multivariate, Multiple Output Rational Interpolation Models With Application to Microwave Circuits
,”
Int. J. RF Microwave Comput.-Aided Eng.
,
12
(
4
), pp.
332
340
.10.1002/mmce.10032
27.
Sugiyama
,
M.
,
2006
, “
Active Learning in Approximately Linear Regression Based on Conditional Expectation of Generalization Error
,”
J. Mach. Learn.
,
7
, pp.
141
166
.10.1007/s10994-009-5100-3
28.
Box
,
G. E. P.
,
Hunter
,
J. S.
, and
Hunter
,
W. G.
,
2005
,
Statistics for Experimenters: Design, Innovation, and Discovery
,
2nd ed.
,
Wiley-Interscience
,
Hoboken, NJ
.
29.
Asadi
,
E.
,
Silva
,
M. G. D.
,
Antunes
,
C. H.
,
Dias
,
L.
, and
Glicksman
,
L.
,
2014
, “
Multi-Objective Optimization for Building Retrofit: A Model Using Genetic Algorithm and Artificial Neural Network and an Application
,”
Energy Build.
,
81
, pp.
444
456
.10.1016/j.enbuild.2014.06.009
30.
Avcı
,
H.
,
Kumlutaş
,
D.
,
Özer
,
Ö.
, and
Özşen
,
M.
,
2016
, “
Optimisation of the Design Parameters of a Domestic Refrigerator Using CFD and Artificial Neural Networks
,”
Int. J. Refrig.
,
67
, pp.
227
238
.10.1016/j.ijrefrig.2016.02.018
31.
Bagheri
,
M.
,
Mirbagheri
,
S. A.
,
Bagheri
,
Z.
, and
Kamarkhani
,
A. M.
,
2015
, “
Modeling and Optimization of Activated Sludge Bulking for a Real Wastewater Treatment Plant Using Hybrid Artificial Neural Networks-Genetic Algorithm Approach
,”
Process Saf. Environ. Prot.
,
95
, pp.
12
25
.10.1016/j.psep.2015.02.008
32.
Gossard
,
D.
,
Lartigue
,
B.
, and
Thellier
,
F.
,
2013
, “
Multi-Objective Optimization of a Building Envelope for Thermal Performance Using Genetic Algorithms and Artificial Neural Network
,”
Energy Build.
,
67
, pp.
253
260
.10.1016/j.enbuild.2013.08.026
33.
Magnier
,
L.
, and
Haghighat
,
F.
,
2010
, “
Multiobjective Optimization of Building Design Using TRNSYS Simulations, Genetic Algorithm, and Artificial Neural Network
,”
Build. Environ.
,
45
(
3
), pp.
739
746
.10.1016/j.buildenv.2009.08.016
34.
Tao
,
Y.
,
Wang
,
P.
,
Wang
,
J.
,
Wu
,
Y.
,
Han
,
Y.
, and
Zhou
,
J.
,
2017
, “
Combining Various Wall Materials for Encapsulation of Blueberry Anthocyanin Extracts: Optimization by Artificial Neural Network and Genetic Algorithm and a Comprehensive Analysis of Anthocyanin Powder Properties
,”
Powder Technol.
,
311
, pp.
77
87
.10.1016/j.powtec.2017.01.078
35.
Tehlah
,
N.
,
Kaewpradit
,
P.
, and
Mujtaba
,
I. M.
,
2016
, “
Artificial Neural Network Based Modeling and Optimization of Refined Palm Oil Process
,”
Neurocomputing
,
216
, pp.
489
501
.10.1016/j.neucom.2016.07.050
36.
Funahashi
,
K.-I.
,
1989
, “
On the Approximate Realization of Continuous Mappings by Neural Networks
,”
Neural Networks
,
2
(
3
), pp.
183
192
.10.1016/0893-6080(89)90003-8
37.
Hornik
,
K.
,
1991
, “
Approximation Capabilities of Multilayer Feedforward Networks
,”
Neural Networks
,
4
(
2
), pp.
251
257
.10.1016/0893-6080(91)90009-T
38.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.10.1016/0893-6080(89)90020-8
39.
Rafiq
,
M. Y.
,
Bugmann
,
G.
, and
Easterbrook
,
D. J.
,
2001
, “
Neural Network Design for Engineering Applications
,”
Comput. Struct.
,
79
(
17
), pp.
1541
1552
.10.1016/S0045-7949(01)00039-6
40.
GNU Octave,
2019
, “
GNU Octave 5.1.0
,” accessed Aug. 8, 2019, https://www.gnu.org/software/octave/
41.
Datta
,
R.
, and
Regis
,
R. G.
,
2016
, “
A Surrogate-Assisted Evolution Strategy for Constrained Multi-Objective Optimization
,”
Expert Syst. Appl.
,
57
, pp.
270
284
.10.1016/j.eswa.2016.03.044
42.
Lwin
,
K.
,
Qu
,
R.
, and
Kendall
,
G.
,
2014
, “
A Learning-Guided Multi-Objective Evolutionary Algorithm for Constrained Portfolio Optimization
,”
Appl. Soft Comput.
,
24
, pp.
757
772
.10.1016/j.asoc.2014.08.026
43.
Zhou
,
A.
,
Qu
,
B.-Y.
,
Li
,
H.
,
Zhao
,
S.-Z.
,
Suganthan
,
P. N.
, and
Zhang
,
Q.
,
2011
, “
Multiobjective Evolutionary Algorithms: A Survey of the State of the Art
,”
Swarm Evol. Comput.
,
1
(
1
), pp.
32
49
.10.1016/j.swevo.2011.03.001
You do not currently have access to this content.