Abstract

Water-lubricated rubber bearings are widely used in the propulsion shafting of military craft and ships. These bearings may wear down after a period of service, and consequently, their lubrication characteristics will change, affecting the operation of the shaft. Hydrodynamic lubrication characteristics of water-lubricated rubber bearings with partial wear at the bottom are studied by finite difference method. The steady-state characteristics of water-lubricated rubber bearings with wear and elastic deformation of rubber liner considered are solved with successive over-relaxation iteration method, and the dynamic characteristics are further calculated with finite perturbation method. The results show that water film thickness and distribution of water film pressure is significantly changed by wear. With the same eccentricity ratio, the maximum water film pressure, load capacity, attitude angle, and friction force are reduced by wear, but the friction coefficient is increased by wear. Under the same load, the minimum water film thickness and the maximum water film pressure are slightly affected by wear, the eccentricity ratio increases with the increase of wear, and the attitude angle and the friction coefficient decrease with the increase of wear. For large eccentricity ratios, the direct stiffness coefficients and direct damping coefficients are decreased by wear. The maximum allowable wear depth is approximately 1/6 of the bearing clearance.

References

1.
Cabrera
,
D. L.
,
Woolley
,
N. H.
,
Allanson
,
D. R.
, and
Tridimas
,
Y. D.
,
2005
, “
Film Pressure Distribution in Water-Lubricated Rubber Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
219
(
2
), pp.
125
132
.10.1243/135065005X9754
2.
Geng
,
T.
,
Meng
,
Q. F.
,
Wang
,
N.
,
Yuan
,
X. Y.
,
Meng
,
Q. H.
, and
Jia
,
Q.
,
2014
, “
Experimental Investigation of Film Pressure Distribution in Water-Lubricated Rubber Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
4
), pp.
397
406
.10.1177/1350650113512815
3.
Wang
,
Y. Q.
,
Shi
,
X. J.
, and
Zhang
,
L. J.
,
2014
, “
Experimental and Numerical Study on Water-Lubricated Rubber Bearings
,”
Ind. Lubr. Tribol.
,
66
(
2
), pp.
282
288
.10.1108/ILT-11-2011-0098
4.
Wang
,
N.
,
Meng
,
Q. F.
,
Wang
,
P. P.
,
Geng
,
T.
, and
Yuan
,
X. Y.
,
2013
, “
Experimental Research on Film Pressure Distribution of Water-Lubricated Rubber Bearing With Multiaxial Grooves
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
084501
.10.1115/1.4024147
5.
Wang
,
P. P.
, and
Geng
,
T.
,
2014
, “Simulation and Experimental Research on Properties of Water-Lubricated Rubber Bearing,”
J. Mech. Eng
., 50(13), pp.
113
121
.10.3901/JME.2014.13.113
6.
Zhou
,
G. W.
,
Wang
,
J. X.
,
Han
,
Y. F.
,
Wei
,
B.
,
Tang
,
B. P.
, and
Zhong
,
P.
,
2017
, “
An Experimental Study on Film Pressure Circumferential Distribution of Water-Lubricated Rubber Bearings With Multiple Grooves
,”
Tribol. Trans.
,
60
(
3
), pp.
385
391
.10.1080/10402004.2016.1163760
7.
Liu
,
S. B.
, and
Yang
,
B. G.
,
2015
, “
A New Model of Water-Lubricated Rubber Bearings for Vibration Analysis of Flexible Multistage Rotor Systems
,”
J. Sound Vib.
,
349
, pp.
230
258
.10.1016/j.jsv.2015.03.052
8.
Zhou
,
G. W.
,
Wang
,
J. X.
,
Han
,
Y. F.
,
Li
,
J. Y.
,
Wei
,
P.
, and
Wei
,
B.
,
2016
, “
Study on the Stiffness and Damping Coefficients of Water-Lubricated Rubber Bearings With Multiple Grooves
,”
Proc. Inst. Mech. Eng., Part J
,
230
(
3
), pp.
323
335
.10.1177/1350650115601696
9.
Dufrane
,
K. F.
,
Kannel
,
J. W.
, and
Mccloskey
,
T. H.
,
1983
, “
Wear of Steam Turbine Journal Bearings at Low Operating Speeds
,”
ASME J. Tribol.
,
105
(
3
), pp.
313
317
. 10.1115/1.3254599
10.
Hashimoto
,
H.
,
Wada
,
S.
, and
Nojima
,
K.
,
1986
, “
Performance Characteristics of Worn Journal Bearings in Both Laminar and Turbulent Regimes—Part I: Steady-State Characteristics
,”
ASLE Trans.
,
29
(
4
), pp.
565
571
.10.1080/05698198608981721
11.
Vaidyanathan
,
K.
, and
Keith
Jr.,
T. G.
,
1991
, “
Performance Characteristics of Cavitated Noncircular Journal Bearings in the Turbulent Flow Regime
,”
Tribol. Trans.
,
34
(
1
), pp.
35
44
.10.1080/10402009108982006
12.
Kumar
,
A.
, and
Mishra
,
S. S.
,
1996
, “
Steady-State Analysis of Non-Circular Worn Journal Bearings in Non-Laminar Lubrication Regimes
,”
Tribol. Int.
,
29
(
6
), pp.
493
498
.10.1016/0301-679X(95)00109-H
13.
Fillon
,
M.
, and
Bouyer
,
J.
,
2004
, “
Thermohydrodynamic Analysis of a Worn Plain Journal Bearing
,”
Tribol. Int.
,
37
(
2
), pp.
129
136
.10.1016/S0301-679X(03)00051-3
14.
Chun
,
S. M.
, and
Khonsari
,
M. M.
,
2016
, “
Wear Simulation for the Journal Bearings Operating Under Aligned Shaft and Steady Load During Start-Up and Coast-Down Conditions
,”
Tribol. Int.
,
97
, pp.
440
466
.10.1016/j.triboint.2016.01.042
15.
Sharma
,
S.
, and
Awasthi
,
R. K.
,
2017
, “
Effect of Aspect Ratio on the Performance of Hydrodynamic Journal Bearing Operating Under Wear
,”
Int. J. Theor. Appl. Mech.
,
12
(
3
), pp.
497
522
.
16.
Glavatskih
,
S.
, and
Fillon
,
M.
,
2006
, “
TEHD Analysis of Thrust Bearings With PTFE-Faced Pads
,”
ASME J. Tribol.
,
128
(
1
), pp.
49
58
.10.1115/1.1843833
17.
Cha
,
M.
,
Kuznetsov
,
E.
, and
Glavatskih
,
S.
,
2013
, “
A Comparative Linear and Nonlinear Dynamic Analysis of Compliant Cylindrical Journal Bearings
,”
Mech. Mach. Theory
,
64
(
6
), pp.
80
92
.10.1016/j.mechmachtheory.2013.01.008
18.
De
,
K.
,
Van
,
A.
,
Ostayen
,
R. A. J.
, and
Rixen
,
D. J.
,
2007
, “
Calculation of Stribeck Curves for (Water) Lubricated Journal Bearings
,”
Tribol. Int.
,
40
(
3
), pp.
459
469
.10.1016/j.triboint.2006.04.012
19.
Sun
,
J.
, and
Changlin
,
G.
,
2004
, “
Hydrodynamic Lubrication Analysis of Journal Bearing Considering Misalignment Caused by Shaft Deformation
,”
Tribol. Int.
,
37
(
10
), pp.
841
848
.10.1016/j.triboint.2004.05.007
20.
Lv
,
F. R.
,
Jiao
,
C. X.
,
Ta
,
N.
, and
Rao
,
Z. S.
,
2018
, “
Mixed-Lubrication Analysis of Misaligned Bearing Considering Turbulence
,”
Tribol. Int.
,
119
, pp.
19
26
.10.1016/j.triboint.2017.10.030
21.
Majumdar
,
B. C.
,
Pai
,
R.
, and
Hargreaves
,
D. J.
,
2004
, “
Analysis of Water-Lubricated Journal Bearings With Multiple Axial Grooves
,”
Proc. Inst. Mech. Eng., Part J
,
218
(
2
), pp.
135
146
.10.1177/135065010421800208
You do not currently have access to this content.