Abstract

Applying an appropriate roughness model is one of the most effective ways to improve the accuracy of the numerical simulation for centrifugal compressors, and it is also the key to the study of surface deterioration such as compressor fouling and corrosion. The basis for using the roughness model is to determine the conversion relation between physical roughness and equivalent roughness. In this paper, numerical and experimental studies on the roughness conversion relation for the centrifugal compressors were performed by means of a unique self-developed “pseudo front stage (PFS)” device. An equivalent roughness conversion coefficient of 8.5 was determined on the basis of fitting performance of the U-bend and return channel model. The validity of the conversion coefficient in improving the performance prediction accuracy of the centrifugal compressors was verified by three centrifugal compressor models. The concept of weighted average roughness was proposed to quantify the roughness sensitivity and roughness level of the centrifugal compressor. Quantitative research on the roughness effect of centrifugal compressors indicated that the peak efficiency degradation due to the roughness effect in the compressors was linearly associated with the logarithm of the relative roughness when the impeller of the centrifugal compressor was in the hydraulically rough regime. Doubling or halving the roughness value of all components of a centrifugal compressor in the hydraulically rough flow regime will result in a change in the peak efficiency of the compressor by about 1.72%.

References

1.
Bammert
,
K.
, and
Woelk
,
G. U.
,
1980
, “
The Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor
,”
ASME J. Eng. Power
,
102
(
2
), pp.
283
287
.10.1115/1.3230249
2.
Roberts
,
W. B.
,
Thorp
,
S. A.
,
Prahst
,
P. S.
, and
Strazisar
,
A. J.
,
2013
, “
The Effect of Ultrapolish on a Transonic Axial Rotor
,”
ASME J. Turbomach.
,
135
(
1
), p.
011001
.10.1115/1.4006496
3.
Ju
,
Y.
, and
Zhang
,
C.
,
2016
, “
Robust Design Optimization Method for Centrifugal Impellers Under Surface Roughness Uncertainties Due to Blade Fouling
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
301
314
.10.3901/CJME.2015.1222.153
4.
Chotalia
,
R. J.
, and
Alone
,
D. B.
,
2017
, “
Numerical Investigations on Influence of Uniform Blade Surface Roughness on the Performance Characteristics of a Transonic Axial Flow Compressor Stage
,”
ASME
Paper No. GTINDIA2017-4594.10.1115/GTINDIA2017-4594
5.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.10.1115/1.2219763
6.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.10.1115/1.4000128
7.
Melino
,
F.
,
Peretto
,
A.
, and
Spina
,
P. R.
,
2010
, “
Development and Validation of a Model for Axial Compressor Fouling Simulation
,”
ASME
Paper No. GT2010-22947.10.1115/GT2010-22947
8.
Melino
,
F.
,
Morini
,
M.
,
Peretto
,
A.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2012
, “
Compressor Fouling Modeling: Relationship Between Computational Roughness and Gas Turbine Operation Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
052401
.10.1115/1.4004739
9.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME
Paper No. GT2010-23291.10.1115/GT2010-23291
10.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Non-Uniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamic Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.10.1115/1.4025227
11.
Li
,
Z.
, and
Liu
,
Y.
,
2016
, “
Effect of End-Wall Roughness on Performance of Transonic Axial Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
231
(
7
), pp.
1213
1224
.10.1177/0954410016650910
12.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.10.1115/1.2836561
13.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.10.1115/1.1791281
14.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors: Causes, Effects, Susceptibility, and Sensitivity
,”
ASME
Paper No. GT2009-59239.10.1115/GT2009-59239
15.
Chen
,
S.
,
Xu
,
H.
,
Sun
,
S.
,
Zhang
,
L.
, and
Wang
,
S.
,
2015
, “
Influence of Additional Leading-Edge Surface Roughness on Performances in Highly Loaded Compressor Cascade
,”
Int. J. Turbo Jet-Engines
,
32
(
2
), pp.
155
163
.10.1515/tjj-2014-0021
16.
Chen
,
S.
,
Sun
,
S.
,
Xu
,
H.
,
Zhang
,
L.
,
Wang
,
S.
, and
Zhang
,
T.
,
2013
, “
Influence of Local Surface Roughness of Rotor Blade on Performance of an Axial Compressor Stage
,”
ASME
Paper No. GT2013-94816.10.1115/GT2013-94816
17.
Back
,
S. C.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2012
, “
Effects of Reynolds Number and Surface Roughness Magnitude and Location on Compressor Cascade Performance
,”
ASME J. Turbomach.
,
134
(
5
), p.
051013
.10.1115/1.4003821
18.
Javed
,
A.
, and
Kamphues
,
E.
,
2014
, “
Evaluation of the Influence of Volute Roughness on Turbocharger Compressor Performance From a Manufacturing Perspective
,”
ASME
Paper No. GT2014-26949.10.1115/GT2014-26949
19.
Simon
,
H.
, and
Bülskämper
,
A.
,
1984
, “
On the Evaluation of Reynolds Number and Relative Surface Roughness Effects on Centrifugal Compressor Performance Based on Systematic Experimental Investigations
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
489
498
.10.1115/1.3239592
20.
Casey
,
M. V.
,
1985
, “
The Effects of Reynolds Number on the Efficiency of Centrifugal Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
541
548
.10.1115/1.3239767
21.
Strub
,
R. A.
,
Bonciani
,
L.
,
Borer
,
C. J.
,
Casey
,
M. V.
,
Cole
,
S. L.
,
Cook
,
B. B.
,
Kotzur
,
J.
,
Simon
,
H.
, and
Strite
,
M. A.
,
1987
, “
Influence of the Reynolds Number on the Performance of Centrifugal Compressors
,”
ASME J. Turbomach.
,
109
(
4
), pp.
541
544
.10.1115/1.3262145
22.
Casey
,
M. V.
, and
Robinson
,
C. J.
,
2011
, “
A Unified Correction Method for Reynolds Number, Size, and Roughness Effects on the Performance of Compressors
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
864
876
.10.1177/0957650911410161
23.
Pelz
,
P. F.
, and
Stonjek
,
S. S.
,
2013
, “
The Influence of Reynolds Number and Roughness on the Efficiency of Axial and Centrifugal Fans—A Physically Based Scaling Method
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052601
.10.1115/1.4022991
24.
Scarbolo
,
L.
,
Belardini
,
E.
,
Bellobuono
,
E.
,
Rubino
,
D.
, and
Tapinassi
,
L.
,
2016
, “
Reynolds Correction in Centrifugal Compressors: Theory and Experimental Validation of a Revised Correlation
,”
ASME
Paper No. GT2016-56396.10.1115/GT2016-56396
25.
Kawakubo
,
T.
,
Numakura
,
R.
, and
Majima
,
K.
,
2008
, “
Prediction of Surface Roughness Effects on Centrifugal Compressor Performance
,”
ASME
Paper No. FEDSM2008-55078.10.1115/FEDSM2008-55078
26.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
27.
Cousins
,
W. T.
,
Yu
,
L.
,
Garofano
,
J.
,
Botros
,
B.
,
Sishtla
,
V.
, and
Sharma
,
O.
,
2014
, “
Test and Simulation of the Effects of Surface Roughness on a Shrouded Centrifugal Impeller
,”
ASME
Paper No. GT2014-25480.10.1115/GT2014-25480
28.
Adams
,
T.
,
Grant
,
C.
, and
Watson
,
H.
,
2012
, “
A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-Grain Roughness
,”
Int. J. Mech. Eng. Mechatronics
,
1
(
2
), pp.
66
71
.10.11159/ijmem.2012.008
29.
Chen
,
S.
,
Zhang
,
C.
,
Shi
,
H.
,
Wang
,
S.
, and
Wang
,
Z.
,
2012
, “
Study on the Impact of Fouling on Axial Compressor Stage
,”
ASME
Paper No. GT2012-68041.10.1115/GT2012-68041
30.
Koch
,
C. C.
, and
Smith
,
L. H.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
,
98
(
3
), pp.
411
424
.10.1115/1.3446202
31.
Schäffler
,
A.
,
1980
, “
Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors
,”
ASME J. Eng. Power
,
102
(
1
), pp.
5
12
.10.1115/1.3230232
32.
Xi
,
G.
,
Tian
,
Y.
,
Guo
,
Y.
,
Tang
,
Y.
, and
Wang
,
Z.
,
2019
, “
Experimental and Numerical Investigations on Flow Losses of a U-Bend and Return Channel System for Centrifugal Compressor
,”
ASME
Paper No. GT2019-90559.10.1115/GT2019-90559
33.
Krain
,
H.
,
Hoffmann
,
B.
, and
Pak
,
H.
,
1995
, “
Aerodynamics of a Centrifugal Compressor Impeller With Transonic Inlet Conditions
,”
ASME
Paper No. 95-GT-079.10.1115/95-GT-079
34.
Tian
,
Y.
,
Tang
,
Y.
,
Wang
,
Z.
, and
Xi
,
G.
,
2017
, “
Influence of Adjustable Inlet Guide Vanes on the Performance Characteristics of a Shrouded Centrifugal Compressor
,”
ASME
Paper No. GT2017-63918.10.1115/GT2017-63918
35.
Zhao
,
J. Y.
,
Xi
,
G.
,
Wang
,
Z. H.
, and
Zhao
,
Y.
,
2018
, “
Investigation of the Spike-Stall Warning Method Using the Blade Passing Signal
,”
Sci. China Tech. Sci.
,
61
(
6
), pp.
830
842
.10.1007/s11431-017-9232-5
36.
Aalburg
,
C.
,
Simpson
,
A.
,
Schmitz
,
M. B.
,
Michelassi
,
V.
,
Evangelisti
,
S.
,
Belardini
,
E.
, and
Ballarini
,
V.
,
2011
, “
Design and Testing of Multistage Centrifugal Compressors With Small Diffusion Ratios
,”
ASME J. Turbomach.
,
134
(
4
), p.
041019
.10.1115/1.4003715
37.
ANSYS CFX 14
,
2011
,
ANSYS CFX-Solver Theory Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
38.
Bourgeois
,
J. A.
,
Martinuzzi
,
R. J.
,
Savory
,
E.
,
Zhang
,
C.
, and
Roberts
,
D. A.
,
2011
, “
Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011025
.10.1115/1.4001136
39.
Zhao
,
H. J.
,
Wang
,
Z. H.
, and
Xi
,
G.
,
2017
, “
Unsteady Flow Structures in the Tip Region for a Centrifugal Compressor Impeller Before Rotating Stall
,”
Sci. China Tech. Sci.
,
60
(
6
), pp.
924
934
.10.1007/s11431-016-9005-3
40.
Strasser
,
W.
,
2007
, “
Discrete Particle Study of Turbulence Coupling in a Confined Jet Gas-Liquid Separator
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011101
.10.1115/1.2816008
41.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1984
, “
A Re-Evaluation of Schlichting's Surface Roughness Experiment
,”
ASME J. Fluids Eng.
,
106
(
1
), pp.
60
65
.10.1115/1.3242406
42.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
43.
Schlicting
,
H.
,
1979
,
Boundary-Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
44.
Nikuradse
,
J.
,
1950
, “
Laws of Flow in Rough Pipes
,” NACA, Washington, DC, Report No. NACA-TM-1292.
45.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2003
, “
Turbulent Boundary Layers Over Surfaces Smoothed by Sanding
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
863
870
.10.1115/1.1598992
46.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.10.1115/1.4001492
You do not currently have access to this content.