Abstract

An optimization study was conducted to find the optimum operational characteristics of a synthetic jet actuator (SJA) to postpone the static stall separation over an SD7003 airfoil at Reynolds number of 60,000. A genetic algorithm (GA) coupled with an artificial neural network (ANN) was employed. Aerodynamic performance (L/D) was chosen as the objective function. Both tangent to the boundary layer (TBL) and the cross to the boundary layer (CBL) configurations of SJA were used and their effectiveness in separation control were compared. The following design variables of the SJA were allowed to change within a predetermined range: location, the opening length, the injection velocity amplitude, the injection angle, and the nondimensional frequency. It was found that for location, opening length, and velocity amplitude ratio, a narrow range near the peak optimum values achieved the best performance. However, for the nondimensional frequency and jet injection angle, the optimum values providing highest performance were in a wider range of values. Activation of SJ actuator improved the aerodynamic performance of the airfoil significantly. However, TBL configuration of SJA produced superior improvement in aerodynamic performance. The optimum aerodynamic performance achieved by TBL-SJA was 34.4, in comparison to 25.3 for CBL-SJA and 5 for the uncontrolled stalled airfoil at 13 deg angle of attack.

References

References
1.
Seifert
,
A.
,
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2004
, “
Active Separation Control: An Overview of Reynolds and Mach Numbers Effects
,”
Aerosp. Sci. Technol.
,
8
(
7
), pp.
569
582
.10.1016/j.ast.2004.06.007
2.
Burgmann
,
S.
,
Dannemann
,
J.
, and
Schroder
,
W.
,
2008
, “
Time-Resolved and Volumetric PIV Measurements of a Transitional Separation Bubble on an SD7003 Airfoil
,”
Exp. Fluids
,
44
(
4
), pp.
609
622
.10.1007/s00348-007-0421-0
3.
Chng
,
T. L.
,
Rachman
,
A.
,
Tsai
,
H. M.
, and
Zha
,
G. C.
,
2009
, “
Flow Control of an Airfoil Via Injection and Suction
,”
J. Aircr.
,
46
(
1
), pp.
291
300
.10.2514/1.38394
4.
Sahni
,
O.
,
Wood
,
J.
,
Jansen
,
K. E.
, and
Amitay
,
M.
,
2011
, “
Three-Dimensional Interactions Between a Finite-Span Synthetic Jet and a Crossflow
,”
J. Fluid Mech.
,
671
, pp.
254
287
.10.1017/S0022112010005604
5.
Yen
,
J.
, and
Ahmed
,
N. A.
,
2012
, “
Parametric Study of Dynamic Stall Flow Field With Synthetic Jet Actuation
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071106
.10.1115/1.4006957
6.
Wang
,
Z.
, and
Gursul
,
I.
,
2017
, “
Lift Enhancement of a Flat-Plate Airfoil by Steady Suction
,”
AIAA J.
,
55
(
4
), pp.
1355
1372
.10.2514/1.J055382
7.
Kordík
,
J.
, and
Trávníček
,
Z.
,
2013
, “
Novel Fluidic Diode for Hybrid Synthetic Jet Actuator
,”
ASME. J. Fluids Eng.
,
135
(
10
), p.
101101
.10.1115/1.4024679
8.
Albright
,
S. O.
, and
Solovitz
,
S. A.
,
2016
, “
Examination of a Variable-Diameter Synthetic Jet
,”
ASME. J. Fluids Eng.
,
138
(
12
), p. 0
21103
.10.1115/1.4033912
9.
Abarr
,
M.
,
Mauney
,
D.
,
Hertzberg
,
J.
, and
Montoya
,
L. D.
,
2017
, “
Characterization of a Commercial Synthetic Jet Actuator for Air Quality Applications
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071103
.10.1115/1.4035948
10.
Trávníček
,
Z.
, and
Broučková
,
Z.
,
2018
, “
A Synthetic Jet Issuing From a Bio-Inspired Actuator With an Oscillating Nozzle Lip
,”
ASME. J. Fluids Eng.
,
140
(
10
), p.
101104
.10.1115/1.4039792
11.
Windte
,
J.
,
Scholz
,
U.
, and
Radespiel
,
R.
,
2006
, “
Validation of the RANS-Simulation of Laminar Separation Bubbles on Airfoils
,”
Aerosp. Sci. Technol.
,
10
(
6
), pp.
484
494
.10.1016/j.ast.2006.03.008
12.
Catalano
,
P.
, and
Tognaccini
,
R.
,
2011
, “
RANS Analysis of the Low-Reynolds Number Flow Around the SD7003 Airfoil
,”
Aerosp. Sci. Technol.
,
15
(
8
), pp.
615
626
.10.1016/j.ast.2010.12.006
13.
Wang
,
Z.
,
Kroll
,
N.
,
Huynh
,
H.
,
Persson
,
P.-O.
,
Fidkowski
,
K.
,
Bassi
,
F.
,
Abgrall
,
R.
,
van Leer
,
B.
,
May
,
G.
,
Deconinck
,
H.
,
Caraeni
,
D.
,
Cary
,
A.
,
Hartmann
,
R.
,
Hillewaert
,
K.
, and
Visbal
,
M.
,
2012
, “1st International Workshop on High-Order CFD Methods,” accessed Sept. 9, 2019, http://dept.ku.edu/~cfdku/hiocfd.html
14.
Kroll
,
N.
,
Wang
,
Z.
,
Abgrall
,
R.
,
Bassi
,
F.
,
Caraeni
,
D.
,
de Wiart
,
C.
,
Cary
,
A.
,
Deconinck
,
H.
,
Fidkowski
,
K.
,
Hartmann
,
R.
,
Hillewaert
,
K.
,
Huynh
,
H.
,
Tobias
,
L.
,
May
,
G.
,
Persson
,
P.
-O.,
van Leer
,
B.
, and
Visbal
,
M.
,
2013
, “2nd International Workshop on High-Order CFD Methods,” accessed Sept. 9, 2019, https://www.dlr.de/as/desktopdefault.aspx/tabid-8170/13999_read-35550
15.
Monir
,
H. E.
,
Tadjfar
,
M.
, and
Bakhtian
,
A.
,
2014
, “
Tangential Synthetic Jets for Separation Control
,”
J. Fluids Struct.
,
45
, pp.
50
65
.10.1016/j.jfluidstructs.2013.11.011
16.
Chapin
,
V.
, and
Benard
,
E.
,
2015
, “
Active Control of a Stalled Airfoil Through Steady or Unsteady Actuation Jets
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091103
.10.1115/1.4030483
17.
Zeynali Khameneh
,
N.
, and
Tadjfar
,
M.
,
2016
, “
Improvement of Wind Turbine Efficiency by Using Synthetic Jets
,”
ASME
Paper No. FEDSM2016-7959. 10.1115/FEDSM2016-7959
18.
Tadjfar
,
M.
, and
Asgari
,
E.
,
2018
, “
Active Flow Control of Dynamic Stall by Means of Continuous Jet Flow at Reynolds Number of 1 × 106
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011107
.10.1115/1.4037841
19.
Tadjfar
,
M.
, and
Asgari
,
E.
,
2018
, “
The Role of Frequency and Phase Difference Between the Flow and the Actuation Signal of a Tangential Synthetic Jet on Dynamic Stall Flow Control
,”
ASME. J. Fluids Eng.
,
140
(
11
), p.
111203
.10.1115/1.4040795
20.
Duvigneau
,
R.
, and
Visonneau
,
M.
,
2006
, “
Simulation and Optimization of Stall Control for an Airfoil With a Synthetic Jet
,”
Aerosp. Sci. Technol.
,
10
(
4
), pp.
279
287
.10.1016/j.ast.2006.01.002
21.
Duvigneau
,
R.
,
Hay
,
A.
, and
Visonneau
,
M.
,
2007
, “
Optimal Location of a Synthetic Jet on an Airfoil for Stall Control
,”
ASME. J. Fluids Eng.
,
129
(
7
), pp.
825
833
.10.1115/1.2742729
22.
Han
,
Z. H.
,
Zhang
,
K. S.
,
Song
,
W. P.
, and
Qiao
,
Z. D.
,
2010
, “
Optimization of Active Flow Control Over an Airfoil Using a Surrogate-Management Framework
,”
J. Aircr.
,
47
(
2
), pp.
603
612
.10.2514/1.45899
23.
Lee
,
Y.
,
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Ebert
,
M.
,
2010
, “
Shape Optimization of a Multi-Element Foil Using an Evolutionary Algorithm
,”
ASME. J. Fluids Eng.
,
132
(
5
), p.
051401
.10.1115/1.4001343
24.
Lei
,
J.
, and
He
,
J.
,
2015
, “
Adjoint-Based Aerodynamic Shape Optimization for Low Reynolds Number Airfoils
,”
ASME. J. Fluids Eng.
,
138
(
2
), p.
021401
. 10.1115/1.4031582
25.
Kamari
,
D.
,
Tadjfar
,
M.
, and
Madadi
,
A.
,
2018
, “
Optimization of SD7003 Airfoil Performance Using TBL and CBL at Low Reynolds Numbers
,”
Aerosp. Sci. Technol.
,
79
, pp.
199
211
.10.1016/j.ast.2018.05.049
26.
Fincham
,
J. H. S.
, and
Friswell
,
M. I.
,
2015
, “
Aerodynamic Optimisation of a Camber Morphing Aerofoil
,”
Aerosp. Sci. Technol.
,
43
, pp.
245
255
.10.1016/j.ast.2015.02.023
27.
Wang
,
W.
,
Liu
,
P.
,
Tian
,
Y.
, and
Qu
,
Q.
,
2016
, “
Numerical Study of the Aerodynamic Characteristics of High-Lift Droop Nose With the Deflection of Fowler Flap and Spoiler
,”
Aerosp. Sci. Technol.
,
48
, pp.
75
85
.10.1016/j.ast.2015.10.024
28.
Lu
,
X.
,
Huang
,
J.
,
Song
,
L.
, and
Li
,
J.
,
2018
, “
An Improved Geometric Parameter Airfoil Parameterization Method
,”
Aerosp. Sci. Technol.
,
78
, pp.
241
247
.10.1016/j.ast.2018.04.025
29.
Wu
,
X.
,
Zhang
,
W.
,
Peng
,
X.
, and
Wang
,
Z.
,
2019
, “
Benchmark Aerodynamic Shape Optimization With the POD-Based CST Airfoil Parametric Method
,”
Aerosp. Sci. Technol.
,
84
, pp.
632
640
.10.1016/j.ast.2018.08.005
30.
Pehlivanoglu
,
Y. V.
,
2019
, “
Efficient Accelerators for PSO in an Inverse Design of Multi-Element Airfoils
,”
Aerosp. Sci. Technol.
,
91
, pp.
110
121
.10.1016/j.ast.2019.05.028
31.
Lim
,
H.
, and
Kim
,
H.
,
2019
, “
Multi-Objective Airfoil Shape Optimization Using an Adaptive Hybrid Evolutionary Algorithm
,”
Aerosp. Sci. Technol.
,
87
, pp.
141
153
.10.1016/j.ast.2019.02.016
32.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME. J. Turbomach.
,
129
(
3
), pp.
413
422
.10.1115/1.2184352
33.
Menter
,
F. R.
,
Langtry
,
R.
, and
Volker
,
S.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
1501
1513
.
34.
Galbraith
,
M.
, and
Visbal
,
M.
,
2008
, “
Implicit Large Eddy Simulation of Low Reynolds Number Transitional Flow Past the SD7003 Airfoil
,”
AIAA
Paper No. 2008–0225.10.2514/6.2010-4737
35.
Breuer
,
M.
,
2018
, “
Effect of Inflow Turbulence on an Airfoil Flow With Laminar Separation Bubble: An LES Study
,”
Flow, Turbul. Combust.
,
101
(
2
), pp.
433
456
.10.1007/s10494-017-9890-2
36.
Lian
,
Y.
, and
Shyy
,
W.
,
2007
, “
Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil
,”
AIAA J.
,
45
(
7
), pp.
1501
1513
.10.2514/1.25812
37.
Hain
,
R.
,
Kahler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.10.1017/S0022112009006661
38.
Radespiel
,
R.
,
Windte
,
J.
, and
Scholz
,
U.
,
2007
, “
Numerical and Experimental Flow Analysis of Moving Airfoils With Laminar Separation Bubbles
,”
AIAA J.
,
45
(
6
), pp.
1346
1356
.10.2514/1.25913
39.
Selig
,
M. S.
,
Donovan
,
J. F.
, and
Fraser
,
D. B.
,
1989
,
Airfoils at Low Speeds
,
H. A.
Stokely
, ed., Vol.
8
,
Soartech Publications
,
Virginia Beach, VA
.
40.
Selig
,
M. S.
,
Guglielmo
,
J. J.
,
Broeren
,
A. P.
, and
Giguere
,
P.
,
1995
,
Summary of Low-Speed Airfoil Data
,
M. S.
Selig
, ed., Vol.
1
,
SoarTech Publications
,
Virginia Beach, VA
.
41.
Asgari
,
E.
, and
Tadjfar
,
M.
,
2019
, “
Active Control of Flow Over a Rounded Ramp by Means of Single and Double Adjacent Rectangular Synthetic Jet Actuators
,”
J. Comput. Fluids
,
190
, pp.
98
113
.10.1016/j.compfluid.2019.06.010
42.
Kotapati
,
R. B.
,
Mittal
,
R.
, and
Cattafesta
,
L. N.
,
2007
, “
Numerical Study of a Transitional Synthetic Jet in Quiescent External Flow
,”
J. Fluid Mech.
,
581
, pp.
287
321
.10.1017/S0022112007005642
43.
Yao
,
C.
,
Chen
,
F.
,
Neuhart
,
D.
, and
Harris
,
J.
,
2004
, “Synthetic Jet Flow Field Database for CFD Validation,”
AIAA
Paper No. 2004-2218. 10.2514/2004-2218
You do not currently have access to this content.