Abstract

This study examines the changes in force coefficients and wake flow structures of a square cylinder subject to pulsating in-flow at different frequencies. The Reynolds number is 200, according to previous literature. Over a range of forcing frequencies, a regime is observed where the shedding frequency scales with the forcing frequency rather than the natural shedding frequency, known as the lock-in phenomenon in literature. The change in spectral character across three frequency regimes—pre-lock-in, lock-in, and post-lock-in—are examined and characterized. During pre-lock-in, the shedding frequency remains equal to the natural shedding frequency. However, the corresponding peak in lift coefficient (CL) power spectral density (PSD) is a single decade larger than that of neighboring minima. This contrasts greatly with subsequent regimes where the amplitudes of the peaks are observed to be substantially larger than the amplitudes of neighboring minima. The onset of lock-in is sharp, and the corresponding excitation frequency is identified. The shedding frequency becomes a function of the forcing frequency within this regime, and the corresponding CL PSD peak is four decades larger than that of neighboring minima. The transition beyond the lock-in regime is gradual with peaks of the spectra broadening until separating into multiple discrete peaks. To comprehend the changes in the force coefficients, the vortex structure in the wake is characterized at different frequencies. The connection between the vortex development sequence and force profile is investigated, and z-vorticity probes are utilized to correlate these qualitative observations with prior quantitative analysis. Three-dimensional flow effects are also examined.

References

1.
Huang
,
Z.
,
O'Donnell
,
B.
,
Yung
,
T.
, and
Slocum
,
S.
,
2010
, “
An Advanced Test Method to Determine Viscous Damping of Floating Structures
,”
ASME Paper No. OMAE2010-21156
. 10.1115/OMAE2010-21156
2.
Huang
,
Z.
,
O'Donnell
,
B.
,
Yung
,
T.
, and
Slocum
,
S.
,
2011
, “
Determination of Viscous Damping for Low Frequency Motions of Floating Structures
,”
ASME Paper No. OMAE2011-50351
. 10.1115/OMAE2011-50351
3.
Williamson
,
C.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
4.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
,
1990
, “
On the Formation and Suppression of Vortex ‘Shedding’ at Low Reynolds Numbers
,”
J. Fluid Mech.
,
218
(
1
), pp.
71
107
.10.1017/S0022112090000933
5.
Bearman
,
P.
, and
Branković
,
M.
,
2004
, “
Experimental Studies of Passive Control of Vortex-Induced Vibration
,”
Eur. J. Mech.–B
,
23
(
1
), pp.
9
15
.10.1016/j.euromechflu.2003.06.002
6.
Trim
,
A.
,
Braaten
,
H.
,
Lie
,
H.
, and
Tognarelli
,
M.
,
2005
, “
Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers
,”
J. Fluids Struct.
,
21
(
3
), pp.
335
361
.10.1016/j.jfluidstructs.2005.07.014
7.
Korkischko
,
I.
, and
Meneghini
,
J.
,
2012
, “
Suppression of Vortex-Induced Vibration Using Moving Surface Boundary-Layer Control
,”
J. Fluids Struct.
,
34
, pp.
259
270
.10.1016/j.jfluidstructs.2012.05.010
8.
Griffin
,
O. M.
, and
Ramberg
,
S. E.
,
1976
, “
Vortex Shedding From a Cylinder Vibrating in Line With an Incident Uniform Flow
,”
J. Fluid Mech.
,
75
(
2
), pp.
257
271
.10.1017/S0022112076000207
9.
Tanida
,
Y.
,
Okajima
,
A.
, and
Watanabe
,
Y.
,
1973
, “
Stability of a Circular Cylinder Oscillating in Uniform Flow or in a Wake
,”
J. Fluid Mech.
,
61
(
4
), pp.
769
784
.10.1017/S0022112073000935
10.
Minewitsch
,
S.
,
Franke
,
R.
, and
Rodi
,
W.
,
1994
, “
Numerical Investigation of Laminar Vortex-Shedding Flow Past a Square Cylinder Oscillating in Line With the Mean Flow
,”
J. Fluids Struct.
,
8
(
7
), pp.
787
802
.10.1016/S0889-9746(94)90280-1
11.
Steggel
,
N.
, and
Rockliff
,
N.
,
1997
, “
Simulation of the Effects of Body Shape on Lock-in Characteristics in Pulsating Flow by the Discrete Vortex Method
,”
J. Wind Eng. Ind. Aerodyn.
,
69–71
, pp.
317
329
.10.1016/S0167-6105(97)00165-7
12.
Jiang
,
H.
, and
Cheng
,
L.
,
2018
, “
Hydrodynamic Characteristics of Flow Past a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
30
(
10
), p.
104107
.10.1063/1.5050439
13.
Williamson
,
C. H. K.
,
1996
, “
Three-Dimensional Wake Transition
,”
J. Fluid Mech.
,
328
, pp.
345
407
.10.1017/S0022112096008750
14.
Okajima
,
A.
,
1982
, “
Strouhal Number of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.10.1017/S0022112082003115
15.
Dutta
,
S.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2007
, “
Sensitivity of a Square Cylinder Wake to Forced Oscillations
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
852
870
.10.1115/1.2742736
16.
Ongoren
,
A.
, and
Rockwell
,
D.
,
1988
, “
Flow Structure From an Oscillating Cylinder—Part 1: Mechanisms of Phase Shift and Recovery in the Near Wake
,”
J. Fluid Mech.
,
191
(
1
), pp.
197
223
.10.1017/S0022112088001569
17.
Ongoren
,
A.
, and
Rockwell
,
D.
,
1988
, “
Flow Structure From an Oscillating Cylinder—Part 2: Mode Competition in the Near Wake
,”
J. Fluid Mech.
,
191
(
1
), pp.
225
245
.10.1017/S0022112088001570
18.
Williamson
,
C. H.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of an Oscillating Cylinder
,”
J. Fluids Struct.
,
2
(
4
), pp.
355
381
.10.1016/S0889-9746(88)90058-8
19.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoustics
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
20.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), p.
620
.10.1063/1.168744
21.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Spliting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
22.
Luo
,
S. C.
,
Chew
,
Y. T.
, and
Ng
,
Y. T.
,
2003
, “
Characteristics of Square Cylinder Wake Transition Flows
,”
Phys. Fluids
,
15
(
9
), pp.
2549
2559
.10.1063/1.1596413
23.
Luo
,
S. C.
,
Tong
,
X. H.
, and
Khoo
,
B. C.
,
2007
, “
Transition Phenomena in the Wake of a Square Cylinder
,”
J. Fluids Struct.
,
23
(
2
), pp.
227
248
.10.1016/j.jfluidstructs.2006.08.012
24.
Franke
,
R.
,
Rodi
,
W.
, and
Schönung
,
B.
,
1990
, “
Numerical Calculation of Laminar Vortex-Shedding Flow Past Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
35
, pp.
237
257
.10.1016/0167-6105(90)90219-3
25.
Okajima
,
A.
,
1995
, “
Numerical Analysis of Flow Around an Oscillating Cylinder
,”
Proceedings of the Sixth International Conference on Flow Induced Vibration
,
London, UK
, Apr. 10–12, pp.
159
166
.
26.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1999
, “
Simulation of Three-Dimensional Flow Around a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
11
(
2
), pp.
288
306
.10.1063/1.869879
27.
Saha
,
A. K.
,
Biswas
,
G.
, and
Muralidhar
,
K.
,
2003
, “
Three-Dimensional Study of Flow Past a Square Cylinder at Low Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
54
66
.10.1016/S0142-727X(02)00208-4
28.
Provansal
,
M.
,
Mathis
,
C.
, and
Boyer
,
L.
,
1987
, “
Bénard-Von Kármán Instability: Transient and Forced Regimes
,”
J. Fluid Mech.
,
182
(
1
), pp.
1
22
.10.1017/S0022112087002222
29.
Naudascher
,
E.
,
1987
, “
Flow-Induced Streamwise Vibrations of Structures
,”
J. Fluids Struct.
,
1
(
3
), pp.
265
298
.10.1016/0889-9746(87)90243-X
30.
Cabral
,
B.
, and
Leedom
,
L. C.
,
1993
, “
Imaging Vector Fields Using Line Integral Convolution
,”
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '93, Association for Computing Machinery
,
Anaheim, CA
, Aug. 2–6, pp.
263
270
.10.1145/166117.166151
You do not currently have access to this content.