Abstract

We present our findings from a numerical investigation of the acceleration-driven Rayleigh–Taylor Instability, modulated by varying periods without an applied acceleration field. It is well known from studies on shock-driven Richtmyer–Meshkov instability that mixing without external forcing grows with a scaling exponent as t0.200.28. When the Rayleigh–Taylor Instability is subjected to varying periods of “zero” acceleration, the structural changes to the mixing layer remain remarkably small. After the acceleration is re-applied, the mixing layer quickly resumes the profile of development it would have had if there had been no intermission. This behavior contrasts in particular with the strong sensitivity that is found to other variable acceleration profiles examined previously in the literature.

References

1.
Rayleigh
,
L.
,
1884
, “
Investigation of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. R. Soc. London
,
14
, pp.
170
177
.10.1112/plms/s1-14.1.170
2.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes I
,”
Proc. R. Soc. London Ser. A
,
201
(
1065
), pp.
192
196
.10.1098/rspa.1950.0052
3.
Zhou
,
Y.
,
2017
, “
Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flow, Turbulence, and Mixing—I
,”
Phys. Rep.
,
720–722
, pp.
1
136
.10.1016/j.physrep.2017.07.005
4.
Youngs
,
D.
,
1984
, “
Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. D: Nonlinear Phenom.
,
12
(
1–3
), pp.
32
44
.10.1016/0167-2789(84)90512-8
5.
Ristorcelli
,
J.
, and
Clark
,
T.
,
2004
, “
Rayleigh–Taylor Turbulence: Self-Similar Analysis and Direct Numerical Simulations
,”
J. Fluid Mech.
,
507
, pp.
213
253
.10.1017/S0022112004008286
6.
Banerjee
,
A.
, and
Andrews
,
M. J.
,
2009
, “
3D Simulations to Investigate Initial Condition Effects on the Growth of Rayleigh–Taylor Mixing
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3906
3917
.10.1016/j.ijheatmasstransfer.2009.03.032
7.
Banerjee
,
A.
,
Kraft
,
W.
, and
Andrews
,
M.
,
2010
, “
Detailed Measurements of a Rayleigh–Taylor Mixing Layer From Small to Intermediate Atwood Numbers
,”
J. Fluid Mech.
,
659
, pp.
127
190
.10.1017/S0022112010002351
8.
Molchanov
,
O.
,
2004
, “
On the Origin of Low- and Middle-Latitude Ionospheric Turbulence
,”
Phys. Chem. Earth
,
29
(
4–9
), pp.
559
567
.10.1016/j.pce.2003.11.018
9.
Gull
,
S.
,
1975
, “
The x-Ray, Optical and Radio Properties of Young Supernova Remnants
,”
R. Astron. Soc. Mon. Not.
,
171
(
2
), pp.
263
278
.10.1093/mnras/171.2.263
10.
Boffetta
,
G.
, and
Mazzino
,
A.
,
2017
, “
Incompressible Rayleigh–Taylor Turbulence
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
119
143
.10.1146/annurev-fluid-010816-060111
11.
Livescu
,
D.
,
2020
, “
Turbulence With Large Thermal and Compositional Density Variations
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
309
341
.10.1146/annurev-fluid-010719-060114
12.
Banerjee
,
A.
,
2020
, “
Rayleigh–Taylor Instability: A Status Review of Experimental Designs and Measurement Diagnostics
,”
ASME J. Fluids Eng.
,
142
(
12
), p.
120801
.10.1115/1.4048349
13.
Atzeni
,
S.
, and
ter Vehn
,
J. M.
,
2009
,
The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter
,
Oxford University Press
,
Oxford, UK
.
14.
Lindl
,
J.
,
1998
,
Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive
,
Springer
,
Berlin
.
15.
Dimonte
,
G.
, and
Schneider
,
M.
,
1996
, “
Turbulent Rayleigh–Taylor Instability Experiments With Variable Acceleration
,”
Phys. Rev. E
,
54
(
4
), pp.
3740
3743
.10.1103/PhysRevE.54.3740
16.
Dimonte
,
G.
, and
Schneider
,
M.
,
2000
, “
Density Ratio Dependence of Rayleigh–Taylor Mixing for Sustained and Impulsive Acceleration Histories
,”
Phys. Fluids
,
12
(
2
), pp.
304
321
.10.1063/1.870309
17.
Livescu
,
D.
,
Wei
,
T.
, and
Petersen
,
M. R.
,
2011
, “
Direct Numerical Simulations of Rayleigh–Taylor Instability
,”
J. Phys.: Conf. Ser.
,
318
(
8
), p.
082007
.10.1088/1742-6596/318/8/082007
18.
Ramaprabhu
,
P.
,
Karkhanis
,
V.
, and
Lawrie
,
A.
,
2013
, “
The Rayleigh–Taylor Instability Driven by an Accel-Decel-Accel Profile
,”
Phys. Fluids
,
25
(
11
), p.
115104
.10.1063/1.4829765
19.
Aslangil
,
D.
,
Banerjee
,
A.
, and
Lawrie
,
A.
,
2016
, “
Numerical Investigation of Initial Condition Effects on Rayleigh–Taylor Instability With Acceleration Reversals
,”
Phys. Rev. E
,
94
(
5
), p.
053114
.10.1103/PhysRevE.94.053114
20.
Boffetta
,
G.
,
Magnani
,
M.
, and
Musacchio
,
S.
,
2019
, “
Suppression of Rayleigh–Taylor Turbulence by Time-Periodic Acceleration
,”
Phys. Rev. E
,
99
(
3
), p.
033110
.10.1103/PhysRevE.99.033110
21.
Aslangil
,
D.
,
Farley
,
Z.
,
Banerjee
,
A.
, and
Lawrie
,
A.
,
2020
, “
Effects of Variable Deceleration Periods on Rayleigh–Taylor Instability With Acceleration Reversals
,”
Phys. Fluids
, Under preview.
22.
Aslangil
,
D.
,
Livescu
,
D.
, and
Banerjee
,
A.
,
2020
, “
Acceleration Reversal Effects on Buoyancy-Driven Variable-Density Turbulence
,”
Proceedings of the 22nd Australasian Fluid Mechanics Conference, Brisbane
,
Australia
, Dec. 6–10.
23.
Andrews
,
M.
,
1995
, “
Accurate Computation of Convective Transport in Transient Two-Phase Flow
,”
Int. J. Numer. Methods Fluids
,
21
(
3
), pp.
205
222
.10.1002/fld.1650210303
24.
Dimonte
,
G.
,
Ramaprabhu
,
P.
, and
Andrews
,
M.
,
2007
, “
Rayleigh–Taylor Instability With Complex Acceleration History
,”
Phys. Rev. E
,
76
(
4
), p.
046313
.10.1103/PhysRevE.76.046313
25.
Aslangil
,
D.
,
Livescu
,
D.
, and
Banerjee
,
A.
,
2020
, “
Effects of Atwood and Reynolds Numbers on the Evolution of Buoyancy-Driven Homogeneous Variable-Density Turbulence
,”
J. Fluid Mech.
,
895
, p.
A12
.10.1017/jfm.2020.268
26.
Aslangil
,
D.
,
Livescu
,
D.
, and
Banerjee
,
A.
,
2019
, “
Flow Regimes in Buoyancy-Driven Homogeneous Variable-Density Turbulence
,”
Progress in Turbulence VIII
,
R.
Örlü
,
A.
Talamelli
,
J.
Peinke
, and
M.
Oberlack
, eds.,
Springer International Publishing
,
Berlin
, pp.
235
240
.
27.
Aslangil
,
D.
,
Livescu
,
D.
, and
Banerjee
,
A.
,
2020
, “
Variable-Density Buoyancy-Driven Turbulence With Asymmetric Initial Density Distribution
,”
Phys. D: Nonlinear Phenom.
,
406
, p.
132444
.10.1016/j.physd.2020.132444
28.
Ramaprabhu
,
P.
,
Karkhanis
,
V.
,
Banerjee
,
R.
,
Varshochi
,
H.
,
Khan
,
M.
, and
Lawrie
,
A. G. W.
,
2016
, “
Evolution of the Single-Mode Rayleigh–Taylor Instability Under the Influence of Time- Dependent Accelerations
,”
Phys. Rev. E
,
93
(
1
), p.
013118
.10.1103/PhysRevE.93.013118
29.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.10.1002/cpa.3160130207
30.
Meshkov
,
E. E.
,
1972
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
,
4
(
5
), pp.
101
104
.10.1007/BF01015969
31.
Horne
,
J.
, and
Lawrie
,
A.
,
2020
, “
Aspect-Ratio-Constrained Rayleigh–Taylor Instability
,”
Phys. D: Nonlinear Phenom.
,
406
, p.
132442
.10.1016/j.physd.2020.132442
32.
Lawrie
,
A.
,
2010
, “
Rayleigh–Taylor Mixing: Confinement by Stratification and Geometry
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
33.
Dimonte
,
G.
,
Youngs
,
D. L.
,
Dimits
,
A.
,
Weber
,
S.
,
Marinak
,
M.
,
Wunsch
,
S.
,
Garasi
,
C.
,
Robinson
,
A.
,
Andrews
,
M. J.
,
Ramaprabhu
,
P.
,
Calder
,
A. C.
,
Fryxell
,
B.
,
Biello
,
J.
,
Dursi
,
L.
,
MacNeice
,
P.
,
Olson
,
K.
,
Ricker
,
P.
,
Rosner
,
R.
,
Timmes
,
F.
,
Tufo
,
H.
,
Young
,
Y.-N.
, and
Zingale
,
M.
,
2004
, “
A Comparative Study of the Turbulent Rayleigh–Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration
,”
Phys. Fluids
,
16
(
5
), pp.
1668
1693
.10.1063/1.1688328
34.
Akula
,
B.
, and
Ranjan
,
D.
,
2016
, “
Dynamics of Buoyancy-Driven Flows at Moderately High Atwood Numbers
,”
J. Fluid Mech.
,
795
, pp.
313
355
.10.1017/jfm.2016.199
35.
Thornber
,
B.
,
Griffond
,
J.
,
Poujade
,
O.
,
Attal
,
N.
,
Varshochi
,
H.
,
Bigdelou
,
P.
,
Ramaprabhu
,
P.
,
Olson
,
B.
,
Greenough
,
J.
,
Zhou
,
Y.
,
Schilling
,
O.
,
Garside
,
K. A.
,
Williams
,
R. J. R.
,
Batha
,
C. A.
,
Kuchugov
,
P. A.
,
Ladonkina
,
M. E.
,
Tishkin
,
V. F.
,
Zmitrenko
,
N. V.
,
Rozanov
,
V. B.
, and
Youngs
,
D. L.
,
2017
, “
Late-Time Growth Rate, Mixing, and Anisotropy in the Multimode Narrowband Richtmyer–Meshkov Instability: The θ-Group Collaboration
,”
Phys. Fluids
,
29
(
10
), p.
105107
.10.1063/1.4993464
36.
Wong
,
M. L.
,
Livescu
,
D.
, and
Lele
,
S. K.
,
2019
, “
High-Resolution Navier-Stokes Simulations of Richtmyer–Meshkov Instability With Reshock
,”
Phys. Rev. Fluids
,
4
(
10
), p.
104609
.10.1103/PhysRevFluids.4.104609
37.
Weber
,
C. R.
,
Cook
,
A. W.
, and
Bonazza
,
R.
,
2013
, “
Growth Rate of a Shocked Mixing Layer With Known Initial Perturbations
,”
J. Fluid Mech.
,
725
, pp.
372
401
.10.1017/jfm.2013.216
38.
Elbaz
,
Y.
, and
Shvarts
,
D.
,
2018
, “
Modal Model Mean Field Self-Similar Solutions to the Asymptotic Evolution of Rayleigh–Taylor and Richtmyer–Meshkov Instabilities and Its Dependence on the Initial Conditions
,”
Phys. Plasmas
,
25
(
6
), p.
062126
.10.1063/1.5031922
You do not currently have access to this content.