Abstract

The performance of different versions of the discrete random walk models in turbulent flows with nonuniform normal root-mean-square (RMS) velocity fluctuations and turbulence time scales were carefully investigated. The OpenFOAM v2f low Reynolds number turbulence model was used for evaluating the fully developed streamwise velocity and the wall-normal RMS velocity fluctuations profiles in a turbulent channel flow. The results were then used in an in-house matlab particle tracking code, including the drag and Brownian forces, and the trajectories of randomly injected point-particles with diameters ranging from 10 nm to 30 μm were evaluated under the one-way coupling assumption. The distributions and deposition velocities of fluid-tracer and finite-size particles were evaluated using the conventional-discrete random walk (DRW) model, the modified-DRW model including the velocity gradient drift correction, and the new improved-DRW model including the velocity and time gradient drift terms. It was shown that the conventional-DRW model leads to superfluous migration of fluid-point particles toward the wall and erroneous particle deposition rate. The concentration profiles of tracer particles obtained by using the modified-DRW model still are not uniform. However, it was shown that the new improved-DRW model with the velocity and time scale drift corrections leads to uniform distributions for fluid-point particles and reasonable concentration profiles for finite-size heavy particles. In addition, good agreement was found between the estimated deposition velocities of different size particles by the new improved-DRW model with the available data.

References

1.
Davudov
,
D.
,
Moghanloo
,
R. G.
, and
Flom
,
J.
,
2018
, “
Scaling Analysis and Its Implication for Asphaltene Deposition in a Wellbore
,”
SPE J.
,
23
(
02
), pp.
274
285
.10.2118/187950-PA
2.
Luo
,
K.
,
Yu
,
H.
,
Dai
,
Z.
,
Fang
,
M.
, and
Fan
,
J.
,
2016
, “
CFD Simulations of Flow and Dust Dispersion in a Realistic Urban Area
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
228
242
.10.1080/19942060.2016.1150205
3.
Chalupa
,
D. C.
,
Morrow
,
P. E.
,
Oberdörster
,
G.
,
Utell
,
M. J.
, and
Frampton
,
M. W.
,
2004
, “
Ultrafine Particle Deposition in Subjects With Asthma
,”
Environ. Health Perspectives
,
112
(
8
), pp.
879
882
.10.1289/ehp.6851
4.
Tian
,
L.
, and
Ahmadi
,
G.
,
2012
, “
Transport and Deposition of Micro-and Nano-Particles in Human Tracheobronchial Tree by an Asymmetric Multi-Level Bifurcation Model
,”
J. Comput. Multiphase Flows
,
4
(
2
), pp.
159
182
.10.1260/1757-482X.4.2.159
5.
Tian
,
L.
, and
Ahmadi
,
G.
,
2013
, “
Fiber Transport and Deposition in Human Upper Tracheobronchial Airways
,”
J. Aerosol Sci.
,
60
, pp.
1
20
.10.1016/j.jaerosci.2013.02.001
6.
Tavakol
,
M. M.
,
Ghahramani
,
E.
,
Abouali
,
O.
,
Yaghoubi
,
M.
, and
Ahmadi
,
G.
,
2017
, “
Deposition Fraction of Ellipsoidal Fibers in a Model of Human Nasal Cavity for Laminar and Turbulent Flows
,”
J. Aerosol Sci.
,
113
, pp.
52
70
.10.1016/j.jaerosci.2017.07.008
7.
Finlay
,
W. H.
,
2019
, “
Aerosol Physics and Lung Deposition Modeling
,”
Pharmaceutical Inhalation Aerosol Technology
,
Taylor and Francis Group, Boca Raton, FL
, p.
81
8.
Innocenti
,
A.
,
Marchioli
,
C.
, and
Chibbaro
,
S.
,
2016
, “
Lagrangian Filtered Density Function for LES-Based Stochastic Modelling of Turbulent Particle-Laden Flows
,”
Phys. Fluids
,
28
(
11
), p.
115106
.10.1063/1.4967800
9.
Marchioli
,
C.
,
2017
, “
Large-Eddy Simulation of Turbulent Dispersed Flows: A Review of Modelling Approaches
,”
Acta Mech.
,
228
(
3
), pp.
741
771
.10.1007/s00707-017-1803-x
10.
Taylor
,
G. I.
,
1922
, “
Diffusion by Continuous Movements
,”
Proc. London Math. Soc.
,
s2-20
(
1
), pp.
196
212
.10.1112/plms/s2-20.1.196
11.
Gosman
,
A. D.
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.10.2514/3.62687
12.
Legg
,
B. J.
, and
Raupach
,
M. R.
,
1982
, “
Markov-Chain Simulation of Particle Dispersion in Inhomogeneous Flows: The Mean Drift Velocity Induced by a Gradient in Eulerian Velocity Variance
,”
Boundary-Layer Meteorol.
,
24
(
1
), pp.
3
13
.10.1007/BF00121796
13.
MacInnes
,
J. M.
, and
Bracco
,
F. V.
,
1992
, “
Stochastic Particle Dispersion Modeling and the Tracer‐Particle Limit
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
12
), pp.
2809
2824
.10.1063/1.858337
14.
Iliopoulos
,
I.
, and
Hanratty
,
T. J.
,
1999
, “
Turbulent Dispersion in a Non-Homogeneous Field
,”
J. Fluid Mech.
,
392
, pp.
45
71
.10.1017/S0022112099005431
15.
Bocksell
,
T. L.
, and
Loth
,
E.
,
2001
, “
Random Walk Models for Particle Diffusion in Free-Shear Flows
,”
AIAA J.
,
39
(
6
), pp.
1086
1096
.10.2514/2.1421
16.
Mito
,
Y.
, and
Hanratty
,
T. J.
,
2002
, “
Use of a Modified Langevin Equation to Describe Turbulent Dispersion of Fluid Particles in a Channel Flow
,”
Flow, Turbul. Combust.
,
68
(
1
), pp.
1
26
.10.1023/A:1015614823809
17.
Jayaraju
,
S. T.
,
Sathiah
,
P.
,
Roelofs
,
F.
, and
Dehbi
,
A.
,
2015
, “
RANS Modeling for Particle Transport and Deposition in Turbulent Duct Flows: Near Wall Model Uncertainties
,”
Nucl. Eng. Des.
,
289
, pp.
60
72
.10.1016/j.nucengdes.2015.04.011
18.
Mofakham
,
A. A.
, and
Ahmadi
,
G.
,
2019
, “
Accuracy of the CRW Models for Prediction of the Deposition and Dispersion of Particles in Inhomogeneous Turbulent Channel Flows
,”
ASME
Paper No. AJKFluids2019-4856.10.1115/AJKFluids2019-4856
19.
Mofakham
,
A. A.
, and
Ahmadi
,
G.
,
2019
, “
Particles Dispersion and Deposition in Inhomogeneous Turbulent Flows Using Continuous Random Walk Models
,”
Phys. Fluids
,
31
(
8
), p.
083301
.10.1063/1.5095629
20.
Mofakham
,
A. A.
, and
Ahmadi
,
G.
,
2020
, “
On Random Walk Models for Simulation of Particle-Laden Turbulent Flows
,”
Int. J. Multiphase Flow
,
122
, p.
103157
.10.1016/j.ijmultiphaseflow.2019.103157
21.
Monin
,
A. S.
, and
Yaglom
,
A. M.
,
1973
,
Statistical Fluid Mechanics: Mechanics of Turbulence
,
1
,
MIT Press
,
Cambridge, Mass
English ed. updated, Augmented and Rev.
22.
Durbin
,
P. A.
,
1980
, “
A Random Flight Model of Inhomogeneous Turbulent Dispersion
,”
Phys. Fluids
,
23
(
11
), p.
2151
.10.1063/1.862908
23.
Durbin
,
P. A.
,
1983
, “
Stochastic Differential Equations and Turbulent Dispersion
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA RP 1103c.1.
24.
Durbin
,
P. A.
,
1984
, “
Comments on Papers by Wilson et al.(1981) and Legg and Raupach (1982)
,”
Boundary-Layer Meteorol.
,
29
(
4
), pp.
409
411
.10.1007/BF00120539
25.
Tian
,
L.
, and
Ahmadi
,
G.
,
2007
, “
Particle Deposition in Turbulent Duct Flows—Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(
4
), pp.
377
397
.10.1016/j.jaerosci.2006.12.003
26.
Durbin
,
P. A.
,
1991
, “
Near-Wall Turbulence Closure Modeling Without ‘Damping Functions
,”
3
(
1
), p.
13
.
27.
Durbin
,
P. A.
,
1993
, “
Application of a Near-Wall Turbulence Model to Boundary Layers and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
14
(
4
), pp.
316
323
.10.1016/0142-727X(93)90004-7
28.
Lien
,
F.-S.
, and
Kalitzin
,
G.
,
2001
, “
Computations of Transonic Flow With the v2–f Turbulence Model
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
53
61
.10.1016/S0142-727X(00)00073-4
29.
Davidson
,
L.
,
2003
, “
Modification of the V2f Model for Computing the Flow in a 3D Wall Jet
,”
Turbul. Heat Mass Trans.
,
4
, pp.
577
584
.
30.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
1991
, “
Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer
,”
J. Colloid Interface Sci.
,
143
(
1
), pp.
266
277
.10.1016/0021-9797(91)90458-K
31.
Li
,
A.
, and
Ahmadi
,
G.
,
1993
, “
Deposition of Aerosols on Surfaces in a Turbulent Channel Flow
,”
Int. J. Eng. Sci.
,
31
(
3
), pp.
435
451
.10.1016/0020-7225(93)90017-O
32.
Matida
,
E. A.
,
Nishino
,
K.
, and
Torii
,
K.
,
2000
, “
Statistical Simulation of Particle Deposition on the Wall From Turbulent Dispersed Pipe Flow
,”
Int. J. Heat Fluid Flow
,
21
(
4
), pp.
389
402
.10.1016/S0142-727X(00)00004-7
33.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
, John Wiley & Sons, Hoboken, NJ. 
34.
Fan
,
F.-G.
, and
Ahmadi
,
G.
,
1993
, “
A Sublayer Model for Turbulent Deposition of Particles in Vertical Ducts With Smooth and Rough Surfaces
,”
J. Aerosol Sci.
,
24
(
1
), pp.
45
64
.10.1016/0021-8502(93)90084-M
35.
Wood
,
N. B.
,
1981
, “
A Simple Method for the Calculation of Turbulent Deposition to Smooth and Rough Surfaces
,”
J. Aerosol Sci.
,
12
(
3
), pp.
275
290
.10.1016/0021-8502(81)90127-0
36.
Majlesara
,
M.
,
Salmanzadeh
,
M.
, and
Ahmadi
,
G.
,
2013
, “
A Model for Particles Deposition in Turbulent Inclined Channels
,”
J. Aerosol Sci.
,
64
, pp.
37
47
.10.1016/j.jaerosci.2013.06.001
37.
Brown
,
D. J.
, and
Hutchinson
,
P.
,
1979
, “
The Interaction of Solid or Liquid Particles and Turbulent Fluid Flow Fields—A Numerical Simulation
,”
ASME J. Fluids Eng.
,
101
(
2
), pp.
265
269
.10.1115/1.3448949
38.
Kallio
,
G. A.
, and
Reeks
,
M. W.
,
1989
, “
A Numerical Simulation of Particle Deposition in Turbulent Boundary Layers
,”
Int. J. Multiphase Flow
,
15
(
3
), pp.
433
446
.10.1016/0301-9322(89)90012-8
39.
Bocksell
,
T. L.
, and
Loth
,
E.
,
2006
, “
Stochastic Modeling of Particle Diffusion in a Turbulent Boundary Layer
,”
Int. J. Multiphase Flow
,
32
(
10–11
), pp.
1234
1253
.10.1016/j.ijmultiphaseflow.2006.05.013
40.
Iliopoulos
,
I.
, and
Hanratty
,
T. J.
,
2004
, “
A Non-Gaussian Stochastic Model to Describe Passive Tracer Dispersion and Its Comparison to a Direct Numerical Simulation
,”
Phys. Fluids
,
16
(
8
), pp.
3006
3030
.10.1063/1.1760770
41.
McLaughlin
,
J. B.
,
1989
, “
Aerosol Particle Deposition in Numerically Simulated Channel Flow
,”
Phys. Fluids A: Fluid Dyn.
,
1
(
7
), pp.
1211
1224
.10.1063/1.857344
42.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
1993
, “
Brownian Particle Deposition in a Directly Simulated Turbulent Channel Flow
,”
Phys. Fluids A: Fluid Dyn.
,
5
(
6
), pp.
1427
1432
.10.1063/1.858578
43.
Nasr
,
H.
,
Ahmadi
,
G.
, and
Mclaughlin
,
J. B.
,
2009
, “
A DNS Study of Effects of Particle–Particle Collisions and Two-Way Coupling on Particle Deposition and Phasic Fluctuations
,”
J. Fluid Mech.
,
640
, pp.
507
536
.10.1017/S0022112009992011
44.
Mofakham
,
A. A.
,
Ahmadi
,
G.
, and
McLaughlin
,
J.
,
2018
, “
Interactions of Flow Structure With Nano- and Micro-Particles in Turbulent Channel Flows
,”
ASME Paper No. FEDSM2018-83349.
45.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
46.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Re Τ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
47.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
,
1988
, “
Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
194
(
1
), p.
15
.10.1017/S0022112088002885
48.
Marchioli
,
C.
,
Picciotto
,
M.
, and
Soldati
,
A.
,
2007
, “
Influence of Gravity and Lift on Particle Velocity Statistics and Transfer Rates in Turbulent Vertical Channel Flow
,”
Int. J. Multiphase Flow
,
33
(
3
), pp.
227
251
.10.1016/j.ijmultiphaseflow.2006.09.005
49.
Caporaloni
,
M.
,
Tampieri
,
F.
,
Trombetti
,
F.
, and
Vittori
,
O.
,
1975
, “
Transfer of Particles in Nonisotropic Air Turbulence
,”
J. Atmos. Sci.
,
32
(
3
), pp.
565
568
.10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
50.
Reeks
,
M. W.
,
1983
, “
The Transport of Discrete Particles in Inhomogeneous Turbulence
,”
J. Aerosol Sci.
,
14
(
6
), pp.
729
739
.10.1016/0021-8502(83)90055-1
51.
Papavergos
,
P. G.
, and
Hedley
,
A. B.
,
1984
, “
Particle Deposition Behaviour From Turbulent Flows
,”
Chem. Eng. Res. Des.
,
62
(
5
), pp.
275
295
.
52.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.10.1080/02786829208959550
53.
He
,
C.
, and
Ahmadi
,
G.
,
1999
, “
Particle Deposition in a Nearly Developed Turbulent Duct Flow With Electrophoresis
,”
J. Aerosol Sci.
,
30
(
6
), pp.
739
758
.10.1016/S0021-8502(98)00760-5
54.
Guingo
,
M.
, and
Minier
,
J.-P.
,
2008
, “
A Stochastic Model of Coherent Structures for Particle Deposition in Turbulent Flows
,”
Phys. Fluids
,
20
(
5
), p.
053303
.10.1063/1.2908934
55.
Jin
,
C.
,
Potts
,
I.
, and
Reeks
,
M. W.
,
2015
, “
A Simple Stochastic Quadrant Model for the Transport and Deposition of Particles in Turbulent Boundary Layers
,”
Phys. Fluids
,
27
(
5
), p.
053305
.10.1063/1.4921490
56.
Zhang
,
H.
, and
Ahmadi
,
G.
,
2000
, “
Aerosol Particle Transport and Deposition in Vertical and Horizontal Turbulent Duct Flows
,”
J. Fluid Mech.
,
406
, pp.
55
80
.10.1017/S0022112099007284
57.
Chen
,
M.
, and
McLaughlin
,
J. B.
,
1995
, “
A New Correlation for the Aerosol Deposition Rate in Vertical Ducts
,”
J. Colloid Interface Sci.
,
169
(
2
), pp.
437
455
.10.1006/jcis.1995.1054
58.
Young
,
J.
, and
Leeming
,
A.
,
1997
, “
A Theory of Particle Deposition in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
340
, pp.
129
159
.10.1017/S0022112097005284
You do not currently have access to this content.