Abstract

Small axial fans are used for cooling electronic equipment and are often installed in a casing with various slits. Direct aeroacoustic simulations and experiments were performed with different casing opening ratios to clarify the effects of the flow through the casing slits on the flow field and acoustic radiation around a small axial fan. Both the predicted and measured results show that aerodynamic performance deteriorates at and near the design flow rate and is higher at low flow rates by completely closing the casing slits compared with the fan in the casing with slits. The predicted flow field shows that the vortical structures in the tip vortices are spread by the suppression of flow through the slits at the design flow rate, leading to the intensification of turbulence in the blade wake. Moreover, the pressure fluctuations on the blade surface are intensified, which increases the aerodynamic sound pressure level. The suppression of the outflow of pressurized air through the downstream part of the slits enhances the aerodynamic performance at low flow rates. Also, the predicted surface streamline at the design flow rate shows that air flows along the blade tip for the fan with slits, whereas the flow toward the blade tip appears for the fan without slits. As a result, the pressure distributions on the blade and the torque exerted on the fan blade are affected by the opening ratio of slits.

References

References
1.
Longhouse
,
R. E.
,
1978
, “
Control of Tip-Vortex Noise of Axial Flow Fans by Rotating Shrouds
,”
J. Sound Vib.
,
58
(
2
), pp.
201
214
.10.1016/S0022-460X(78)80075-3
2.
Fukano
,
T.
,
Takamatsu
,
Y.
, and
Kodama
,
Y.
,
1986
, “
The Effects of Tip Clearance on the Noise of Low Pressure Axial and Mixed Flow Fans
,”
J. Sound Vib.
,
105
(
2
), pp.
291
308
.10.1016/0022-460X(86)90158-6
3.
Camussi
,
R.
,
Grilliat
,
J.
,
Caputi-Gennaro
,
G.
, and
Jacob
,
M. C.
,
2010
, “
Experimental Study of a Tip Leakage Flow: Wavelet Analysis of Pressure Fluctuations
,”
J. Fluid Mech.
,
660
, pp.
87
113
.10.1017/S0022112010002570
4.
Muthanna
,
C.
, and
Devenport
,
W. J.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap, Part 1: Mean Flow and Turbulence Structure
,”
AIAA J.
,
42
(
11
), pp.
2320
2331
.10.2514/1.5270
5.
Boudet
,
J.
,
Cahuzac
,
A.
,
Kausche
,
P.
, and
Jacob
,
M. C.
,
2015
, “
Zonal Large-Eddy Simulation of a Fan Tip-Clearance Flow, With Evidence of Vortex Wandering
,”
ASME J. Turbomach.
,
137
(
6
), p.
061001
.10.1115/1.4028668
6.
Moghadam
,
S. M. A.
,
Meinke
,
M.
, and
Schroder
,
W.
,
2019
, “
Analysis of Tip-Leakage Flow in an Axial Fan at Varying Tip-Gap Sizes and Operating Conditions
,”
Comp. Fluids
,
183
(
15
), pp.
107
129
.10.1016/j.compfluid.2019.01.014
7.
Aktürk
,
A.
, and
Camci
,
C.
,
2010
, “
Axial Flow Fan Tip Leakage Flow Control Using Tip Platform Extensions
,”
ASME J. Fluid. Eng.
,
132
(
5
), p.
051109
.10.1115/1.4001540
8.
Morris
,
S. C.
, and
Foss
,
J. F.
,
2001
, “
The Effects of Tip Clearance on the Noise of Low Pressure Axial and Mixed Flow Fans
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
287
292
.10.1115/1.1359212
9.
Neuhaus
,
L.
, and
Neise
,
W.
,
2005
, “
Active Control to Improve the Aerodynamic Performance and Reduce the Tip Clearance Noise of Axial Turbomachines
,”
AIAA Paper No. 2005-3073.
10.
Eberlinc
,
M.
,
Sirok
,
B.
,
Dular
,
M.
, and
Hocevar
,
M.
,
2019
, “
Modification of Axial Fan Flow by Trailing Edge Self-Induced Blowing
,”
ASME J. Fluid. Eng.
,
131
(
11
), p.
111104
.10.1115/1.4000345
11.
Itagaki
,
R.
,
Minowa
,
K.
,
Yokoyama
,
H.
, and
Iida
,
A.
,
2018
, “
Effects of Slits of Casing on Aeroacoustic Noise Radiated From an Axial Fan
,”
Proceedings of 25th International Congress on Sound and Vibration
, Hiroshima, Japan, July 8–12, pp.
1383
1390
.https://pdfs.semanticscholar.org/5cb8/061ac36e4f4a6e131906bd8c15ee43e1932b.pdf
12.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
13.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.10.1016/0021-9991(92)90324-R
14.
Liu
,
Q.
, and
Vasilyev
,
O. V.
,
2007
, “
A Brinkman Penalization Method for Compressible Flows in Complex Geometries
,”
J. Comput. Phys.
,
227
(
2
), pp.
946
966
.10.1016/j.jcp.2007.07.037
15.
Yokoyama
,
H.
,
Miki
,
A.
,
Onitsuka
,
H.
, and
Iida
,
A.
,
2015
, “
Direct Numerical Simulation of Fluid-Acoustic Interactions in a Recorder With Tone Holes
,”
J. Acoust. Soc. Am.
,
138
(
2
), pp.
858
873
.10.1121/1.4926902
16.
Tanaka
,
Y.
,
Yokoyama
,
H.
, and
Iida
,
A.
,
2018
, “
Forced-Oscillation Control of Sound Radiated From the Flow Around a Cascade of Flat Plates
,”
J. Sound Vib.
,
431
, pp.
248
264
.10.1016/j.jsv.2018.06.013
17.
Matsuura
,
K.
, and
Kato
,
C.
,
2007
, “
Large-Eddy Simulation of Compressible Transitional Flows in a Low-Pressure Turbine Cascade
,”
AIAA J.
,
45
(
2
), pp.
442
457
.10.2514/1.22425
18.
Gaitonde
,
D. V.
, and
Visbal
,
M. R.
,
2000
, “
Pade-Type Higher-Order Boundary Filters for the Navier-Stokes Equations
,”
AIAA J.
,
38
(
11
), pp.
2103
2112
.10.2514/2.872
19.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.10.1016/0021-9991(87)90041-6
20.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
21.
Kim
,
J. W.
, and
Lee
,
D. J.
,
2000
, “
Generalized Characteristic Boundary Conditions for Computational Aeroacoustics
,”
AIAA J.
,
38
(
11
), pp.
2040
2049
.10.2514/2.891
22.
Yokoyama
,
H.
, and
Kato
,
C.
,
2009
, “
Fluid-Acoustic Interactions in Self-Sustained Oscillations in Turbulent Cavity Flows—I: Fluid-Dynamic Oscillations
,”
Phys. Fluids
,
21
(
10
), p.
105103
.10.1063/1.3253326
23.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
24.
Sakai
,
Y.
,
Moriguchi
,
Y.
,
Tanaka
,
N.
,
Yamamoto
,
M.
,
Kubo
,
T.
, and
Nagata
,
K.
,
2007
, “
On Characteristics of Velocity and Pressure Field in Two-Dimensional Turbulent Jet
,”
J. Fluid Sci. Technol.
,
2
(
3
), pp.
611
622
.10.1299/jfst.2.611
25.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2003
, “
Large-Eddy Simulation of Supersonic Cavity Flow fields Including Flow Control
,”
AIAA J.
,
41
(
8
), pp.
1452
1462
.10.2514/2.2128
26.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Large Eddy Simulations of Round Free Jets Using Explicit Filtering With/Without Dynamic Smagorinsky Model
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
603
610
.10.1016/j.ijheatfluidflow.2006.02.008
27.
Bogey
,
C.
, and
Bailly
,
C.
,
2009
, 2009, “
Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation
,”
J. Fluid Mech.
,
627
, pp.
129
160
.10.1017/S0022112009005801
You do not currently have access to this content.