Abstract

Multi-objective design optimization was applied to the impeller and volute of a centrifugal pump using surrogate-based optimization techniques and three-dimensional Reynolds-averaged Navier–Stokes (RANS) analysis. The objective functions used to improve the hydraulic performance and operating stability of the pump were the hydraulic efficiency at the design condition and the flow rate at which the maximum volute pressure recovery coefficient occurs. Three design variables were selected based on the results of a sensitivity analysis: the blade outlet angle, the constants in determining the impeller outlet width, and the cross-sectional area of the volute. Using response surface approximation (RSA), surrogate models were constructed for the objective functions based on numerical results at experimental points obtained by Latin hypercube sampling (LHS). The representative Pareto-optimal solutions obtained by the multi-objective genetic algorithm (MOGA) show enhanced objective function values compared to the baseline design. The results of unsteady calculation show that the flow instability of the centrifugal pump was successfully suppressed by the optimization.

References

1.
Japikse
,
D.
,
Marscher
,
W. D.
, and
Furst
,
R. B.
,
1997
,
Centrifugal Pump Design and Performance
,
Concepts ETI
,
Vermont
.
2.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping Systems
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
193
242
.10.1115/1.3241725
3.
Gülich
,
J. F.
,
1989
,
Centrifugal Pumps
,
Springer
,
New-York
.
4.
Ayder
,
E.
, and
Van Den Braembussche
,
R.
,
1994
, “
Numerical Analysis of the Three- Dimensional Swirling Flow in Centrifugal Compressor Volutes
,”
ASME J. Turbomach.
,
116
(
3
), pp.
462
468
.10.1115/1.2929435
5.
Brennen
,
C. E.
,
2007
, “
Multifrequency Instability of Cavitating Inducers
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
731
736
.10.1115/1.2734238
6.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
,
1992
, “
Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump: A. Technique
,”
ASME J. Fluids Eng.
,
114
(
3
), pp.
390
395
.10.1115/1.2910043
7.
Dehner
,
R.
, and
Selamet
,
A.
,
2019
, “
Three-Dimensional Computational Fluid Dynamics Prediction of Turbocharger Centrifugal Compression System Instabilities
,”
ASME J. Turbomach.
,
141
(
8
), p.
081004
.10.1115/1.4042728
8.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Group
,
Harlow, Essex, UK
.
9.
Rusch
,
D.
, and
Casey
,
M.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031035
.10.1115/1.4007548
10.
Tamaki
,
H.
,
Nakao
,
H.
, and
Saito
,
M.
,
1999
, “
The Experimental Study of Matching Between Centrifugal Compressor Impellers and Diffuser
,”
ASME J. Turbomach.
,
121
(
1
), pp.
113
118
.10.1115/1.2841218
11.
Lettieri
,
C.
,
Defoe
,
J.
, and
Spakovszky
,
Z. S.
,
2015
, “
An Investigation of Nonlinear Flow Oscillations in a High-Pressure Centrifugal Pump
,”
ASME J. Turbomach.
,
137
(
11
), p.
111004
.10.1115/1.4031250
12.
Kim
,
K. Y.
,
Samad
,
A.
, and
Benini
,
E.
,
2019
,
Design Optimization of Fluid Machinery: Applying Computational Fluid Dynamics and Numerical Optimization
,
Wiley-Blackwell
,
Singapore
.
13.
Oksuz
,
O.
,
2010
, “
Multi-Objective Aerodynamic Optimization of Axial Turbine Blades Using a Novel Multilevel Genetic Algorithm
,”
ASME J. Turbomach.
,
132
(
4
), p.
041009
.10.1115/1.3213558
14.
Wang
,
X. D.
,
Hirsch
,
C.
,
Kang
,
S.
, and
Lacor
,
C.
,
2011
, “
Multi-Objective Optimization of Turbomachinery Using Improved NSGA-II and Approximation Model
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
9–12
), pp.
883
895
.10.1016/j.cma.2010.11.014
15.
Kim
,
J.-H.
,
Ovgor
,
B.
,
Cha
,
K.-H.
,
Kim
,
J.-H.
,
Lee
,
S.
, and
Kim
,
K.-Y.
,
2014
, “
Optimization of the Aerodynamic and Aeroacoustic Performance of an Axial-Flow Fan
,”
AIAA J.
,
52
(
9
), pp.
2032
2044
.10.2514/1.J052754
16.
Shim
,
H. S.
,
Afzal
,
A.
,
Kim
,
K. Y.
, and
Jeong
,
H. S.
,
2016
, “
Three-Objective Optimization of a Centrifugal Pump With Double Volute to Minimize Radial Thrust at Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
6
), pp.
598
615
.10.1177/0957650916656544
17.
Shim
,
H. S.
,
Kim
,
K. Y.
, and
Choi
,
Y. S.
,
2018
, “
Three-Objective Optimization of a Centrifugal Pump to Reduce Flow Recirculation and Cavitation
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091202
.10.1115/1.4039511
18.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
19.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.2307/1268522
20.
Stepanoff
,
A. J.
,
1957
, “
Centrifugal and Axial Flow Pumps: Theory
,”
Design, and Application
,
Wiley
,
New York
.
21.
ANSYS
,
2014
,
ANSYS CFX-Solver Theory Guide-Release 15.0
,
ANSYS
,
Canonsburg, PA
.
22.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
Paper No. AIAA-89-0366.
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
24.
Shim
,
H. S.
, and
Kim
,
K. Y.
,
2019
, “
Evaluation of Rotor-Stator Interface Models for the Prediction of the Hydraulic and Suction Performance of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111106
.10.1115/1.4043272
25.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
26.
Shim
,
H.-S.
, and
Kim
,
K.-Y.
,
2020
, “
Effects of the Cross-Sectional Area of a Volute on Suction Recirculation and Cavitation in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051204
.10.1115/1.4045573
27.
Celik
,
I.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
584
590
.10.1115/1.2819284
28.
Deniz
,
S.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N. A.
,
2000
, “
Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers: Part 2—Straight-Channel Diffuser
,”
ASME J. Turbomach.
,
122
(
1
), pp.
11
21
.10.1115/1.555424
29.
Shim
,
H.-S.
,
2020
, “
Geometric Effects on the Suction Recirculation, Cavitation and Flow Instability of a Centrifugal Pump
,”
Ph.D. thesis, Inha University, Incheon, South Korea.
30.
MATLAB
,
2004
,
The Language of Technical Computing-Release 14
,
The Math Works
,
Natick, MA
.
31.
Coello
,
C. C.
,
Lamont
,
G. B.
, and
Van Veldhuizen
,
D.
,
2007
,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Springer
,
New York
.
32.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
33.
Choi
,
Y.-S.
,
Kim
,
K.-Y.
,
Yoo
,
I.-S.
, and
Lee
,
Y.-K.
,
2017
, “
Development of Design Program for Centrifugal and Mixed-Flow Pump (4th Year Report)
,” Korea Ministry of Trade, Industry and Energy, Sejong-si, South Korea, Report No.10044860.
34.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
35.
Lettieri
,
C.
,
Baltadjiev
,
N.
,
Casey
,
M.
, and
Spakovszky
,
Z.
,
2014
, “
Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2
,”
ASME J. Turbomach.
,
136
(
8
), pp.
1
9
.10.1115/1.4026322
36.
Giunta
,
A. A.
,
1994
, “
Aircraft Multidisciplinary Design Optimization Using Design of Experiments Theory and Response Surface Modeling Methods
,” Ph.D. dissertation,
Virginia Polytechnic Institute and State University
, Blacksburg, VA.
37.
Japikse
,
D.
, and
Baines
,
N. C.
,
1998
,
Turbomachinery Diffuser Design Technology
,
Concepts ETI
,
Vermont
.
38.
Hergt
,
P.
, and
Starke
,
J.
,
1985
, “
Flow Patterns Causing Instabilities in the Performance Curves of Centrifugal Pumps With Vaned Diffusers
,”
Proceedings of the Second International Pump Users Symposium, Turbomachinery Laboratories, Texas A&M Engineering Experiment Station
, Houston, TX, pp.
67
76
.
You do not currently have access to this content.