Abstract

This work deals with the improvement in aerodynamic performance of a NACA0025 wing model using an array of slotted synthetic jets (SJs). A novel SJ actuator was designed and located at 30% of the chord from the leading edge (LE). Time-resolved particle image velocimetry (TR-PIV), force balance, static pressure distribution, and hotwire measurements were carried out in a subsonic wind tunnel to assess the performance enhancement due to the slotted SJ array. Initially, the SJ velocity was measured in quiescent flow condition at different actuation frequencies and amplifier voltages. Actuation at 1000 Hz and 200 V resulted in the highest blowing velocity of 10.5 m/s. Experiments were performed at various actuation frequencies, namely, 200, 600, and 1000 Hz. It was observed that actuation at 1000 Hz led to the highest increase in lift coefficient by 35.6% and reduction in average drag coefficient by 33%. TR-PIV measurements showed flow separation with flow reversal in the baseline case. After switching on the SJ array at 1000 Hz, the flow separation was completely eliminated. The momentum transfer from the highenergy primary flow to the retarding boundarylayer flow and actuation of SJ in a particular frequency range was observed to be the mechanisms for the flow separation control. Subsequently, fast Fourier transform (FFT) power spectra of hotwire data were computed from 40% to 80% of the chord. The FFT power spectra showed the successful stabilization of the flow field at the actuation of 1000 Hz.

References

References
1.
Cattafesta
,
L. N.
, and
Sheplak
,
M.
,
2011
, “
Actuators for Active Flow Control
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
247
272
.10.1146/annurev-fluid-122109-160634
2.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.10.1016/S0376-0421(00)00008-7
3.
Gilarranz
,
J. L.
,
Traub
,
L. W.
, and
Rediniotis
,
O. K.
,
2005
, “
A New Class of Synthetic Jet Actuator—Part I: Design, Fabrication and Bench Top Characterization
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
367
376
.10.1115/1.1839931
4.
Gilarranz
,
J. L.
,
Traub
,
L. W.
, and
Rediniotis
,
O. K.
,
2005
, “
A New Class of Synthetic Jet Actuator—Part II: Application to Flow Separation Control
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
377
387
.10.1115/1.1882393
5.
Jabbal
,
M.
,
Liddle
,
S.
,
Potts
,
J.
, and
Crowther
,
W.
,
2013
, “
Development of Design Methodology for a Synthetic Jet Actuator Array for Flow Separation Control Applications
,”
Proc. Inst. Mech. Eng., Part G
,
227
(
1
), pp.
110
124
.10.1177/0954410011428256
6.
Mahalingam
,
R.
,
Rumigny
,
N.
, and
Glezer
,
A.
,
2004
, “
Thermal Management With Synthetic Jet Ejectors
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
3
), pp.
439
444
.10.1109/TCAPT.2004.831757
7.
Lee
,
C. Y. Y.
,
Woyciekoski
,
M. L.
, and
Copetti
,
J. B.
,
2016
, “
Experimental Study of Synthetic Jets With Rectangular Orifice for Electronic Cooling
,”
Exp. Therm. Fluid Sci.
,
78
, pp.
242
248
.10.1016/j.expthermflusci.2016.06.007
8.
Valiorgue
,
P.
,
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2009
, “
Heat Transfer Mechanisms in an Impinging Synthetic Jet for a Small Jet-to-Surface Spacing
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
597
603
.10.1016/j.expthermflusci.2008.12.006
9.
Rylatt
,
D. I.
, and
O'Donovan
,
T. S.
,
2013
, “
Heat Transfer Enhancement to a Confined Impinging Synthetic Air Jet
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
468
475
.10.1016/j.applthermaleng.2012.08.010
10.
He
,
W.
,
Luo
,
Z.
,
Deng
,
X.
, and
Xia
,
Z.
,
2019
, “
Experimental Investigation on the Performance of a Novel Dual Synthetic Jet Actuator-Based Atomization Device
,”
Int. J. Heat Mass Transfer
,
142
, p.
118406
.10.1016/j.ijheatmasstransfer.2019.07.056
11.
Gilmore
,
P.
,
Sundaresan
,
V.-B.
,
Seidt
,
J.
, and
Smith
,
J.
,
2017
, “
Design and Analysis of a Synthetic Jet Actuator Based Fluid Atomization Device
,”
J. Intell. Mater. Syst. Struct.
,
28
(
17
), pp.
2307
2316
.10.1177/1045389X17689938
12.
Marchitto
,
L.
, and
Valentino
,
G.
,
2017
, “
Water Spray Flow Characteristics Under Synthetic Jet Driven by a Piezoelectric Actuator
,”
J. Phys. Conf. Ser.
,
778
, p.
12005
.10.1088/1742-6596/778/1/012005
13.
Tang
,
H.
,
Salunkhe
,
P. B.
,
Zheng
,
Y.
,
Du
,
J.
, and
Wu
,
Y.
,
2014
, “
On the Use of Synthetic Jet Actuator Arrays for Active Flow Separation Control
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
1
10
.10.1016/j.expthermflusci.2014.03.015
14.
Amitay
,
A.
,
Smith
,
D. R.
,
Kibens
,
V.
,
Parekh
,
D. E.
, and
Glezer
,
A.
,
2001
, “
Aerodynamic Flow Control Over an Unconventional Airfoil Using Synthetic Jet Actuators
,”
AIAA J.
,
39
(
3
), pp.
361
370
.10.2514/2.1323
15.
Glezer
,
A.
,
Amitay
,
M.
, and
Honohan
,
A. M.
,
2005
, “
Aspects of Low- and High-Frequency Actuation for Aerodynamic Flow Control
,”
AIAA J.
,
43
(
7
), pp.
1501
1514
.10.2514/1.7411
16.
Franck
,
J. A.
, and
Colonius
,
T.
,
2012
, “
Effects of Actuation Frequency on Flow Control Applied to a Wall-Mounted a Hump
,”
AIAA J.
,
50
(
7
), pp.
1631
1634
.10.2514/1.J051183
17.
Timor
,
I.
,
Hamou
,
E. B.
,
Guy
,
Y.
, and
Seifert
,
A.
,
2007
, “
Maneuvering Aspects and 3D Effects of Active Airfoil Flow Control
,”
Flow Turbul. Combust.
,
78
(
3–4
), pp.
429
443
.10.1007/s10494-006-9065-z
18.
Sefcovic
,
J. A.
, and
Smith
,
D. R.
,
2010
, “
Proportional Aerodynamic Control of a Swept Divergent Trailing Edge Wing Using Synthetic Jets
,”
AIAA
Paper No. 2010-92. 10.2514/6.2010-92
19.
Traub
,
L. W.
,
Miller
,
A.
, and
Rediniotis
,
O.
,
2004
, “
Effects of Synthetic Jet Actuation on a Ramping NACA 0015 Airfoil
,”
J. Aircr.
,
41
(
5
), pp.
1153
1162
.10.2514/1.3500
20.
Kordik
,
J.
, and
Travnicek
,
Z.
,
2017
, “
Optimal Diameter of Nozzles of Synthetic Jet Actuators Based on Electrodynamic Transducers
,”
Exp. Therm. Fluid Sci.
,
86
, pp.
281
294
.10.1016/j.expthermflusci.2017.03.010
21.
Hong
,
G.
,
2006
, “
Effectiveness of Micro Synthetic Jet Actuator Enhanced by Flow Instability in Controlling Laminar Separation Caused by Adverse Pressure Gradient
,”
Sens. Actuators A
,
132
(
2
), pp.
607
615
.10.1016/j.sna.2006.02.040
22.
Lee
,
C.
,
Hong
,
G.
,
Ha
,
Q. P.
, and
Mallinson
,
S. G.
,
2003
, “
A Piezoelectrically Actuated Micro Synthetic Jet for Active Flow Control
,”
Sens. Actuators A
,
108
(
1–3
), pp.
168
174
.10.1016/S0924-4247(03)00267-X
23.
Amitay
,
M.
, and
Glezer
,
A.
,
2002
, “
Role of Actuation Frequency in Controlled Flow Reattachment Over a Stalled Airfoil
,”
AIAA J.
,
40
, pp.
209
216
.10.2514/2.1662
24.
Salunkhe
,
P. B.
,
Tang
,
H.
,
Zheng
,
Y.
, and
Wu
,
Y.
,
2016
, “
PIV Measurement of Mildly Controlled Flow Over a Straight-Wing Model
,”
Int. J. Heat Fluid Flow
,
62
, pp.
552
559
.10.1016/j.ijheatfluidflow.2016.08.004
25.
Rimasauskiene
,
R.
,
Matejka
,
M.
,
Ostachowicz
,
W.
,
Kurowski
,
M.
,
Malinowski
,
P.
,
Wandowski
,
T.
, and
Rimasauskas
,
M.
,
2015
, “
Experimental Research of the Synthetic Jet Generator Designs Based on Actuation of Diaphragm With Piezoelectric Actuator
,”
Mech. Syst. Signal Process.
,
50–51
, pp.
607
614
.10.1016/j.ymssp.2014.05.030
26.
Raben
,
J.
,
Hariharan
,
P.
,
Robinson
,
R.
,
Malinauskas
,
R.
, and
Vlachos
,
P.
,
2016
, “
Time-Resolved Particle Image Velocimetry Measurements With Wall Shear Stress and Uncertainty Quantification for the FDA Benchmark Nozzle Model
,”
Cardiovasc. Eng. Technol.
,
7
(
1
), pp.
7
37
.10.1007/s13239-015-0251-9
27.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.10.1115/1.3242452
28.
Holman
,
J. P.
,
1966
,
Experimental Methods for Engineers
,
McGraw-Hill Book Company
,
Tokyo, Japan
.
29.
Lazar
,
E.
,
DeBlauw
,
B.
,
Glumac
,
N.
,
Dutton
,
C.
, and
Elliott
,
G.
,
2010
, “
A Practical Approach to PIV Uncertainty Analysis
,”
AIAA
Paper No.
2010
4355
.10.2514/6.2010-4355
30.
Zhou
,
J.
,
Tang
,
H.
, and
Zhong
,
S.
,
2009
, “
Vortex Roll-Up Criterion for Synthetic Jets
,”
AIAA J.
,
47
(
5
), pp.
1252
1262
.10.2514/1.40602
31.
Donovan
,
J. F.
,
Kral
,
L. D.
, and
Cary
,
A. W.
,
1998
, “
Active Flow Control Applied to an Airfoil
,”
AIAA
Paper No.
1998
210
.10.2514/6.1998-210
32.
Seifert
,
A.
,
Eliahu
,
S.
,
Greenblatt
,
D.
, and
Wygnanski
,
I.
,
1998
, “
Use of Piezoelectric Actuators for Airfoil Separation Control
,”
AIAA J.
,
36
(
8
), pp.
1535
1537
.10.2514/2.549
33.
Lee
,
H. M.
, and
Wu
,
Y.
,
2015
, “
A Tomo-PIV Study of the Effects of Freestream Turbulence on Stall Delay of the Blade of a Horizontal-Axis Wind Turbine
,”
Wind Energy
,
18
(
7
), pp.
1185
1205
.10.1002/we.1754
You do not currently have access to this content.