Abstract

The vibration induced by the unsteady fluid exciting force in a centrifugal pump is one of the important factors affecting the reliable operation of the pump. In this study, the cutting of the blade trailing edge of a straight blade is presented to improve the unstable flow and vibration in a centrifugal pump. Based on the large eddy simulation (LES) and fluid–solid coupling method, the transient pressure pulsation, unstable flow structure, and vibration displacement of a centrifugal pump were investigated with different cutting angles of the trailing edge under the design flow rate. The external characteristics of the centrifugal pumps were calculated and compared using the shear stress transport (SST) k–ω turbulence model. The results show that the heads and efficiencies of the pumps with 30 deg and 45 deg cutting angles of the trailing edge slightly improved. The pressure pulsation on the volute evaluated by dominant frequency–amplitude and pressure pulsation energy was reduced due to the lesser average vorticity intensity and trailing vortex area in the centrifugal pump. Therefore, the vibration displacement and the vibration energy at the low frequency of the impeller decreased.

References

References
1.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concept ETI/Oxford University Press
,
Oxford, UK
.
2.
Simpson
,
H.
,
Clark
,
T.
, and
Weir
,
G.
,
1967
, “
A Theoretical Investigation of Hydraulic Noise in Pumps
,”
J. Sound Vib.
,
5
(
3
), pp.
456
488
.10.1016/0022-460X(67)90192-7
3.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2016
, “
Investigation of Rotor-Stator Interaction and Flow Unsteadiness in a Low Specific Speed Centrifugal Pump
,”
J. Mech. Eng.
,
62
(
1
), pp.
21
31
.10.5545/sv-jme.2015.2859
4.
Gao
,
B.
,
Guo
,
P. M.
,
Zhang
,
N.
,
Li
,
Z.
, and
Yang
,
M. G.
,
2017
, “
Unsteady Pressure Pulsation Measurements and Analysis of a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071101
.10.1115/1.4036157
5.
Robert
,
X.
,
Robert
,
A.
,
Lee
,
C.
, and
Taylor
,
H. F.
,
1996
, “
Fiber-Optic Pressure Sensors Detect Cavitation and Flow Instabilities in Centrifugal Pump
,”
Word Pumps
,
5
, pp.
58
59
.10.1016/S0262-1762(99)81032-3
6.
Jia
,
X. Q.
,
Zhu
,
Z. C.
,
Yu
,
X. L.
, and
Zhang
,
Y. L.
,
2019
, “
Internal Unsteady Flow Characteristics of Centrifugal Pump Based on Entropy Generation Rate and Vibration Energy
,”
Proc. Inst. Mech. Eng., Part E
,
233
(
3
), pp.
456
473
.10.1177/0954408918765289
7.
Ding
,
H. C.
,
Li
,
Z. K.
,
Gong
,
X. B.
, and
Li
,
M. S.
,
2019
, “
The Influence of Blade Outlet Angle on the Performance of Centrifugal Pump With High Specific Speed
,”
Vacuum
,
159
, pp.
239
246
.10.1016/j.vacuum.2018.10.049
8.
Guo
,
C.
,
Gao
,
M.
,
Wang
,
J. Y.
,
Shi
,
Y. T.
, and
He
,
S. Y.
,
2019
, “
The Effect of Blade Outlet Angle on the Acoustic Field Distribution Characteristics of a Centrifugal Pump Based on Powell Vortex Sound Theory
,”
Appl. Acoust.
,
155
, pp.
297
308
.10.1016/j.apacoust.2019.05.031
9.
Kergourlay
,
G.
,
Younsi
,
M.
,
Bakir
,
F.
, and
Rey
,
R.
,
2007
, “
Influence of Splitter Blades on the Flow Field of a Centrifugal Pump: Test-Analysis Comparison
,”
Int. J. Rotating Mach.
,
2007
(
4
), pp.
1
13
.10.1155/2007/85024
10.
Zhang
,
J. F.
,
Li
,
G. D.
,
Mao
,
J. Y.
,
Yuan
,
S. Q.
,
Qu
,
Y. F.
, and
Jia
,
J.
,
2018
, “
Effects of the Outlet Position of Splitter Blade on the Flow Characteristics in Low-Specific-Speed Centrifugal Pump
,”
Adv. Mech. Eng.
,
10
(
7
), pp.
1
12
.10.1177/1687814018789525
11.
Kikuyama
,
K.
,
Murakami
,
M.
,
Asakura
,
E.
,
Osuka
,
I.
, and
Liu
,
J.
,
1985
, “
Velocity Distributions in the Impeller Passages of Centrifugal Pumps: Effects of Outlet Edge Shape of the Impeller Blades on the Pump Performance
,”
Bull. JSME
,
28
(
243
), pp.
1963
1969
.10.1299/jsme1958.28.1963
12.
Wu
,
D. Z.
,
Yan
,
P.
,
Chen
,
X.
,
Wu
,
P.
, and
Yang
,
S.
,
2015
, “
Effect of Trailing-Edge Modification of a Mixed-Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101205
.10.1115/1.4030488
13.
Al-Qutub
,
A.
,
Khalifa
,
A.
, and
Khulief
,
Y.
,
2009
, “
Experimental Investigation of the Effect of Radial Gap and Impeller Blade Exit on Flow-Induced Vibration at the Blade-Passing Frequency in a Centrifugal Pump
,”
Int. J. Rotating Mach.
,
2009
, pp.
1
9
.10.1155/2009/704845
14.
Al-Qutub
,
A. M.
,
Khalifa
,
A. E.
, and
Al-Sulaiman
,
F. A.
,
2012
, “
Exploring the Effect of V-Shaped Cut at Blade Exit of a Double Volute Centrifugal Pump
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021301
.10.1115/1.4004798
15.
Warda
,
H.
,
Haddara
,
S.
,
Adam
,
I. G.
, and
Rashad
,
A. B.
,
2017
, “
Blade Trailing Edge Profile Effect on Low Specific Speed Centrifugal Pump Performance
,”
11th International Conference on the Role of Engineering Towards a Better Environment
Bridging, Alexandria, Egypt, Dec. 18–20.https://www.researchgate.net/publication/326259264_BLADE_TRAILING_EDGE_PROFILE_EFFECT_ON_LOW_SPECIFIC_SPEED_CENTRIFUGAL_PUMP_PERFORMANCE
16.
Zhang
,
N.
,
Liu
,
X.
,
Gao
,
B.
,
Wang
,
X. J.
, and
Xia
,
B.
,
2019
, “
Effects of Modifying the Blade Trailing Edge Profile on Unsteady Pressure Pulsations and Flow Structures in a Centrifugal Pump
,”
Int. J. Heat Fluid Flow
,
75
, pp.
227
238
.10.1016/j.ijheatfluidflow.2019.01.009
17.
Zobeiri
,
A.
,
Ausoni
,
P.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2012
, “
How Oblique Trailing Edge of a Hydrofoil Reduces the Vortex-Induced Vibration
,”
J. Fluids Struct.
,
32
, pp.
78
89
.10.1016/j.jfluidstructs.2011.12.003
18.
Heskestad
,
G.
, and
Olberts
,
D.
,
1960
, “
Influence of Trailing-Edge Geometry on Hydraulic-Turbine-Blade Vibration Resulting From Vortex Excitation
,”
ASME J. Eng. Power
,
82
(
2
), pp.
103
109
.10.1115/1.3672718
19.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2015
, “
Experimental Investigation on Unsteady Pressure Pulsation in a Centrifugal Pump With Special Slope Volute
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061103
.10.1115/1.4029574
20.
Ni
,
D.
,
Yang
,
M. G.
,
Gao
,
B.
,
Zhang
,
N.
, and
Li
,
Z.
,
2017
, “
Numerical Study on the Effect of the Diffuser Blade Trailing Edge Profile on Flow Instability in a Nuclear Reactor Coolant Pump
,”
Nucl. Eng. Des.
,
322
, pp.
92
103
.10.1016/j.nucengdes.2017.06.042
21.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M. G.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.10.1115/1.4031911
22.
Ni
,
D.
,
Yang
,
M.
,
Zhang
,
N.
,
Gao
,
B.
, and
Li
,
Z.
,
2017
, “
Unsteady Flow Structures and Pressure Pulsations in a Nuclear Reactor Coolant Pump With Spherical Casing
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051103
.10.1115/1.4035638
23.
Yang
,
B. F.
,
Li
,
B.
,
Chen
,
H.
,
Liu
,
Z. Y.
, and
Xu
,
K. F.
,
2019
, “
Numerical Investigation of the Clocking Effect Between Inducer and Impeller on Pressure Pulsations in a Liquid Rocket Engine Oxygen Turbopump
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071109
.10.1115/1.4042160
24.
Liu
,
C. Q.
,
Wang
,
Y. Q.
,
Yang
,
Y.
, and
Duan
,
Z. W.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys., Mech. Astron.
,
59
(
8
), p.
684711
.10.1007/s11433-016-0022-6
25.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
Springer
,
Berlin, Germany
.
You do not currently have access to this content.