Abstract

Hydroplaning is a phenomenon that occurs when a layer of water between the tire and pavement pushes the tire upward. The tire detaches from the pavement, preventing it from providing sufficient forces and moments for the vehicle to respond to driver control inputs such as breaking, accelerating, and steering. This work is mainly focused on the tire and its interaction with the pavement to address hydroplaning. Using a tire model that is validated based on results found in the literature, fluid–structure interaction (FSI) between the tire-water-road surfaces is investigated through two approaches. In the first approach, the coupled Eulerian–Lagrangian (CEL) formulation was used. The drawback associated with the CEL method is the laminar assumption and that the behavior of the fluid at length scales smaller than the smallest element size is not captured. To improve the simulation results, in the second approach, an FSI model incorporating finite element methods (FEMs) and the Navier–Stokes equations for a two-phase flow of water and air, and the shear stress transport k–ω turbulence model, was developed and validated, improving the prediction of real hydroplaning scenarios. With large computational and processing requirements, a grid dependence study was conducted for the tire simulations to minimize the mesh size yet retain numerical accuracy. The improved FSI model was applied to hydroplaning speed and cornering force scenarios.

References

References
1.
Fwa
,
T.
,
Pasindu
,
H.
, and
Ong
,
G.
,
2012
, “
Critical Rut Depth for Pavement Maintenance Based on Vehicle Skidding and Hydroplaning Consideration
,”
J. Transp. Eng.
,
138
(
4
), pp.
423
429
.10.1061/(ASCE)TE.1943-5436.0000336
2.
Fwa
,
T. F.
,
Kumar
,
A.
, and
Ong
,
G. P.
,
2010
, “
Relative Effectiveness of Grooves in Tire and Pavement in Reducing Vehicle Hydroplaning Risk
,”
Transp. Res. Rec.
,
2155
(
1
), pp.
73
81
.10.3141/2155-08
3.
Allbert
,
B.
,
1968
, “
Tires and Hydroplaning
,”
SAE
Paper No. 680140
. 10.4271/680140
4.
Matthies
,
H. G.
, and
Steindorf
,
J.
,
2003
, “
Partitioned Strong Coupling Algorithms for Fluid–Structure Interaction
,”
Comput. Struct.
,
81
(
8–11
), pp.
805
812
.10.1016/S0045-7949(02)00409-1
5.
Walhorn
,
E.
,
Hübner
,
B.
, and
Dinkler
,
D.
,
2002
, “
Space‐Time Finite Elements for Fluid‐Structure Interaction
,”
Proceedings in Applied Mathematics and Mechanics (PAMM)
, Augsburg, Germany, pp.
81
82
.
6.
Kim
,
T.-W.
, and
Jeong
,
H.-Y.
,
2010
, “
Hydroplaning Simulations for Tires Using FEM, FVM and an Asymptotic Method
,”
Int. J. Automot. Technol.
,
11
(
6
), pp.
901
908
.10.1007/s12239-010-0107-0
7.
Vincent
,
S.
,
Sarthou
,
A.
,
Caltagirone
,
J.-P.
,
Sonilhac
,
F.
,
Février
,
P.
,
Mignot
,
C.
, and
Pianet
,
G.
,
2011
, “
Augmented Lagrangian and Penalty Methods for the Simulation of Two-Phase Flows Interacting With Moving Solids. Application to Hydroplaning Flows Interacting With Real Tire Tread Patterns
,”
J. Comput. Phys.
,
230
(
4
), pp.
956
983
.10.1016/j.jcp.2010.10.006
8.
Ong
,
G.
, and
Fwa
,
T. F.
,
2007
, “
Effectiveness of Transverse and Longitudinal Pavement Grooving in Wet-Skidding Control
,”
Transp. Res. Rec.
,
2005
(
1
), pp.
172
182
.10.3141/2005-18
9.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906. 10.2514/6.AIAA-93-2906
10.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
11.
Guo
,
X-X.
,
Zhang
,
C.
,
Cui
,
B-X.
,
Wang
,
D.
, and
Tsai
,
J.
,
2013
, “
Analysis of Impact of Transverse Slope on Hydroplaning Risk Level
,”
Procedia-Soc. Behav. Sci.
,
96
, pp.
2310
2319
.10.1016/j.sbspro.2013.08.260
12.
Zhou
,
H. C.
,
Wang
,
G. L.
,
Yang
,
J.
, and
Xue
,
K. X.
,
2014
, “
Numerical Simulation of Tire Hydroplaning and Its Influencing Factors
,”
Appl. Mech. Mater.
,
602–605
, pp.
580
585
.10.4028/www.scientific.net/AMM.602-605.580
13.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer
, Vol.
4
,
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
, eds.,
Begell House
, Danbury, CT, pp.
625
632
.
14.
Dong
,
B.
,
Zhang
,
L.
,
Chen
,
M.
,
Tang
,
B.
, and
Liu
,
T.
,
2013
, “
Influencing Factor of Hydrodynamic Pressure on Tire in Wet Weather Based on Fluent
,”
J. Highw. Transp. Res. Dev.
,
7
(
1
), pp.
98
104
.10.1061/JHTRCQ.0000031
15.
Liang
,
X.
,
Li
,
W.
,
Fan
,
W.
, and
Zhao
,
G.
,
2014
, “
Numerical Simulation and Hydrodynamic Performance Prediction for Hydroplane Longitudinal Motion
,”
Comput. Model. New Technol.
,
18
(
2
), pp.
27
32
. http://www.cmnt.lv/upload-files/ns_39art03_CMNT1801-08.pdf
16.
Liu
,
T. Z.
,
Tang
,
B. M.
,
Dong
,
B.
, and
Gao
,
J. P.
,
2012
, “
Analysis of Impact of Tire Tread Groove Depth on Hydroplaning Risk Level
,”
Adv. Mater. Res.
,
455–456
, pp.
1459
1467
.10.4028/www.scientific.net/AMR.455-456.1459
17.
Ong
,
G.
, and
Fwa
,
T. F.
,
2006
, “
Transverse Pavement Grooving Against Hydroplaning—I: Simulation Model
,”
J. Transp. Eng.
,
132
(
6
), pp.
441
448
.10.1061/(ASCE)0733-947X(2006)132:6(441)
18.
Nazari
,
A.
, and
Nazari
,
A.
, “
Experimental Investigation on Newtonian Drop Formation in Different Continuous Phase Fluids
,”
ASME
Paper No. IMECE2018-86602.
10.1115/IMECE2018-86602
19.
Nazari
,
A.
,
Zadkazemi Derakhshi
,
A.
,
Nazari
,
A.
, and
Firoozabadi
,
B.
,
2018
, “
Drop Formation From a Capillary Tube: Comparison of Different Bulk Fluid on Newtonian Drops and Formation of Newtonian and Non-Newtonian Drops in Air Using Image Processing
,”
Int. J. Heat Mass Transfer
,
124
, pp.
912
919
.10.1016/j.ijheatmasstransfer.2018.04.024
20.
Koishi
,
M.
,
Oskano
,
T.
,
Olovsson
,
L.
,
Saito
,
H.
, and
Makino
,
M.
,
2001
, “
Hydroplaning Simulation Using Fluid-Structure Interaction in LS-DYNA
,”
Proceeding of the Third European LS-DYNA Users Conference
, Paris, France.
21.
Cho
,
J. R.
,
Lee
,
H. W.
,
Sohn
,
J. S.
,
Kim
,
G. J.
, and
Woo
,
J. S.
,
2006
, “
Numerical Investigation of Hydroplaning Characteristics of Three-Dimensional Patterned Tire
,”
Eur. J. Mech. A
,
25
(
6
), pp.
914
926
.10.1016/j.euromechsol.2006.02.007
22.
Seta
,
E.
,
Nakajima
,
Y.
,
Kamegawa
,
T.
, and
Ogawa
,
H.
,
2000
, “
Hydroplaning Analysis by FEM and FVM: Effect of Tire Rolling and Tire Pattern on Hydroplaning
,”
Tire Sci. Technol.
,
28
(
3
), pp.
140
156
.10.2346/1.2135997
23.
Cho
,
J. R.
,
Lee
,
H. W.
, and
Yoo
,
W. S.
,
2007
, “
A Wet-Road Braking Distance Estimate Utilizing the Hydroplaning Analysis of Patterned Tire
,”
Int. J. Numer. Methods Eng.
,
69
(
7
), pp.
1423
1445
.10.1002/nme.1813
24.
Bathe
,
K. J.
, and
Zhang
,
H.
,
2004
, “
Finite Element Developments for General Fluid Flows With Structural Interactions
,”
Int. J. Numer. Methods Eng.
,
60
(
1
), pp.
21
32
.10.1002/nme.959
25.
Wang
,
H.
,
Al-Qadi
,
I. L.
, and
Stanciulescu
,
I.
,
2012
, “
Simulation of Tyre-Pavement Interaction for Predicting Contact Stresses at Static and Various Rolling Conditions
,”
Int. J. Pavement Eng.
,
13
(
4
), pp.
310
321
.10.1080/10298436.2011.565767
26.
Horne
,
W. B.
,
Yager
,
T. J.
, and
Ivey
,
D. L.
,
1986
, “
Recent Studies to Investigate Effects of Tire Footprint Aspect Ratio on Dynamic Hydroplaning Speed
,”
The Tire Pavement Interface
,
ASTM International
, West Conshohocken, PA.
27.
Systemes Simulia Corporation,
2014
, “
Abaqus V. 6.14 Documentation
,” Dassault Systemes Simulia Corporation, Providence, RI.
28.
Yamashita
,
H.
,
Matsutani
,
Y.
, and
Sugiyama
,
H.
,
2015
, “
Longitudinal Tire Dynamics Model for Transient Braking Analysis: ANCF-LuGre Tire Model
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031003
.10.1115/1.4028335
29.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2016
, “
Physics-Based Flexible Tire Model Integrated With Lugre Tire Friction for Transient Braking and Cornering Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031017
.10.1115/1.4032855
30.
Liang
,
C.
,
Ji
,
L.
,
Mousavi
,
H.
, and
Sandu
,
C.
,
2019
, “
Evaluation of Tire Traction Performance on Dry Surface Based on Tire-Road Contact Stress
,”
Proceedings of SIAR International Congress of Automotive and Transport Engineering: Science and Management of Automotive and Transportation Engineering
, Romania, pp.
138
152
.
31.
Gent
,
A.
,
1992
,
Elasticity, in Engineering With Rubber
,
Hanser
, München, Germany.
32.
Kang
,
Y-S.
,
Nazari
,
A.
,
Chen
,
L.
,
Ferris
,
J. B.
,
Taheri
,
S.
,
Battaglia
,
F.
, and
Flintsch
,
G.
,
2019
, “
A Probabilistic Approach to Hydroplaning Potential and Risk
,”
SAE Int. J. Passenger Cars: Mech. Syst.
,
12
(
1
), pp.
63
70
.10.4271/06-12-01-0005
33.
Nazari
,
A.
,
Chen
,
L.
,
Battaglia
,
F.
, and
Taheri
,
S.
, “
Developing an Advance Tire Hydroplaning Model Using Co-Simulation of Fully Coupled FEM and CFD Codes to Estimate Cornering Force
,”
ASME
Paper No. IMECE2018-86581
. 10.1115/IMECE2018-86581
34.
Muzaferija
,
S.
,
1998
, “
Computation of Free Surface Flows Using Interface-Tracking and Interface-Capturing Methods
,”
Nonlinear Water-Wave Interaction
,
Computational Mechanics
,
Southampton, UK
.
35.
Ong
,
G. P.
,
2006
, “
Hydroplaning and Skid Resistance Analysis Using Numerical Modeling
,”
Doctoral thesis
,
National University of Singapore
, Singapore. https://core.ac.uk/download/pdf/48630045.pdf
36.
Ong
,
G.
, and
Fwa
,
T. F.
,
2007
, “
Prediction of Wet-Pavement Skid Resistance and Hydroplaning Potential
,”
J. Transp. Res. Board
,
2005
(
1
), pp.
160
171
.10.3141/2005-17
37.
Ong
,
G.
, and
Fwa
,
T. F.
,
2008
, “
Modeling and Analysis of Truck Hydroplaning on Highways
,”
J. Transp. Res. Board
,
2068
(
1
), pp.
99
108
.10.3141/2068-11
38.
Browne
,
A. L.
,
1971
, “
Dynamic Hydroplaning of Pneumatic Tires
,” Doctoral thesis,
Northwestern University
, Evanston, IL.
39.
Browne
,
A. L.
,
1975
, “
Mathematical Analysis for Pneumatic Tire Hydroplaning
,”
Surface Texture Versus Skidding
,
ASTM International
, West Conshohocken, PA, pp.
75
94
.
40.
Horne
,
W. B.
, and
Joyne
,
U. T.
,
1965
, “
Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance
,”
SAE
Paper No. 650145
.10.4271/650145
41.
Moore
,
D. F.
,
1966
, “
Prediction of Skid Resistance Gradient and Drainage Characteristics for Pavements
,” Highway Research Record.
42.
Baudille
,
R.
, and
Biancolini
,
M. E.
,
2005
, “
Modelling FSI Problems in Fluent: A General Propose Approach by Means of UDF Programming
,”
Proceeding of the European Automotive CFD Conference, Frankfurt, Germany.
43.
Yamashita
,
H.
,
Jayakumar
,
P.
,
Alsaleh
,
M.
, and
Sugiyama
,
H.
,
2018
, “
Physics-Based Deformable Tire–Soil Interaction Model for Off-Road Mobility Simulation and Experimental Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021002
.10.1115/1.4037994
44.
Dassault Systemes,
2016
, “Abaqus V.
6.14, Online Documentation Help, Theory Manual
,” Dassault Systemes, Providence, RI.
45.
Sillem
,
A.
,
2008
, “
Feasibility Study of a Tire Hydroplaning Simulation in a Monolithic Finite Element Code Using a Coupled Eulerian-Lagrangian Method
,” Delft Institute of Applied Mathematics, Delft, The Netherlands.
46.
Noh
,
W. F.
,
1963
, “
CEL: A Time-Dependent, Two-Space-Dimensional, Coupled Eulerian-Lagrange Code
,” Lawrence Radiation Lab., University of California, Livermore, CA, Report No. UCRL-7463.
47.
Trulio
,
J. G.
,
1966
, “
Theory and Structure of the AFTON Codes
,” Nortronincs, Newbury Park, CA.
48.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
49.
Gunaratne
,
M.
,
Lu
,
Q.
,
Yang
,
J.
,
Jayasooriya
,
W.
,
Yassin
,
M.
, and
Amarasiri
,
S.
,
2012
, “
Hydroplaning on Multi Lane Facilities
,”
Florida Department of Transportation
, Tallahassee, FL.
50.
Okano
,
T.
, and
Koishi
,
M.
,
2001
, “
A New Computational Procedure to Predict Transient Hydroplaning Performance of a Tire
,”
Tire Sci. Technol.
,
29
(
1
), pp.
2
22
.10.2346/1.2135228
51.
Salaani
,
M. K.
,
Heydinger
,
G. J.
, and
Grygier
,
P. A.
,
2006
, “
Measurement and Modeling of Tire Forces on a Low Coefficient Surface
,”
SAE
Paper No. 0148-7191
.
52.
Co
,
T. Y. R.
,
2015
, “
Yokohama Rubber Advancing Tire Aerodynamics Technology. New Advances Reduce Vehicle Aerodynamic Drag and Lift
,” The Yokohama Rubber Co., Ltd., Japan, accessed June 8, 2020, https://www.y-yokohama.com/release/?id=2518&lang=en&sp=40
You do not currently have access to this content.