Abstract

In this paper, electro-osmotic flow (EOF) enhancement of non-Newtonian power-law fluids in a modulated nanochannel with polarized wall is proposed. The channel walls are embedded with periodically arranged rectangular grooves, placed vertically with the direction of electric field. The key aspect of the present study is to achieve enhanced EOF of power-law fluids due to periodic groove patterns. The flow characteristics are studied through Poisson–Nernst–Plank-based Navier–Stokes model associated with electrochemical boundary conditions. Some random-phase differences between the grooves in both the walls are allowed to find the best configuration for the EOF enhancement in case of both Pseudo-plastic fluid, Dilatant fluid, and compared to Newtonian fluid. A notable enhancement factor is observed when groove width is much larger than its depth along with overlapped EDL. It is also found that EOF enhancement for shear-thinning fluid is quite better than the other fluids, for the same set of physical parameters. A comparison of enhancement factor for power-law fluid is also presented when the grooves are replaced with hydrophobic strips. It is worth to mention here that the present study assumes no-slip condition which is true for wetting (hydrophilic) surface over nonwetting (hydrophobic) strips which is common occurrence in regards to nanoconfinements.

References

References
1.
Babaie
,
A.
,
Saidi
,
M. H.
, and
Sadeghi
,
A.
,
2012
, “
Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Flow of Power-Law Fluids in a Slit Microchannel
,”
Int. J. Therm. Sci.
,
53
, pp.
71
79
.10.1016/j.ijthermalsci.2011.10.015
2.
Hoshyargar
,
V.
,
Talebi
,
M.
,
Ashrafizadeh
,
S. N.
, and
Sadeghi
,
A.
,
2018
, “
Hydrodynamic Dispersion by Electroosmotic Flow of Viscoelastic Fluids Within a Slit Microchannel
,”
Microfluid. Nanofluid.
,
22
(
1
), p.
4
.10.1007/s10404-017-2021-5
3.
Vakili
,
M. A.
,
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2014
, “
Pressure Effects on Electroosmotic Flow of Power-Law Fluids in Rectangular Microchannels
,”
Theor. Comput. Fluid Dyn.
,
28
(
4
), pp.
409
426
.10.1007/s00162-014-0325-6
4.
Xie
,
Z.-Y.
,
Jian
,
Y.-J.
, and
Li
,
F.-Q.
,
2018
, “
Thermal Transport of Magnetohydrodynamic Electroosmotic Flow in Circular Cylindrical Microchannels
,”
Int. J. Heat Mass Transfer
,
119
, pp.
355
364
.10.1016/j.ijheatmasstransfer.2017.11.026
5.
Conlisk
,
A. T.
,
2005
, “
The Debye–Hückel Approximation: Its Use in Describing Electroosmotic Flow in Micro-and Nanochannels
,”
Electrophoresis
,
26
(
10
), pp.
1896
1912
.10.1002/elps.200410238
6.
Misra
,
J.
, and
Sinha
,
A.
,
2015
, “
Electro-Osmotic Flow and Heat Transfer of a Non-Newtonian Fluid in a Hydrophobic Microchannel With Navier Slip
,”
J. Hydrodyn., Ser. B
,
27
(
5
), pp.
647
657
.10.1016/S1001-6058(15)60527-3
7.
Nayak
,
A.
,
Haque
,
A.
, and
Weigand
,
B.
,
2018
, “
Analysis of Electroosmotic Flow and Joule Heating Effect in a Hydrophobic Channel
,”
Chem. Eng. Sci.
,
176
, pp.
165
179
.10.1016/j.ces.2017.10.014
8.
Lauga
,
E.
, and
Stone
,
H. A.
,
2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
, pp.
55
77
.10.1017/S0022112003004695
9.
Lee
,
C.
,
Choi
,
C.-H.
, and
Kim
,
C.-J.
,
2008
, “
Structured Surfaces for a Giant Liquid Slip
,”
Phys. Rev. Lett.
,
101
(
6
), p.
064501
.10.1103/PhysRevLett.101.064501
10.
Bahga
,
S. S.
,
Vinogradova
,
O. I.
, and
Bazant
,
M. Z.
,
2010
, “
Anisotropic Electro-Osmotic Flow Over Super-Hydrophobic Surfaces
,”
J. Fluid Mech.
,
644
, pp.
245
255
.10.1017/S0022112009992771
11.
Zhao
,
H.
,
2010
, “
Electro-Osmotic Flow Over a Charged Superhydrophobic Surface
,”
Phys. Rev. E
,
81
(
6
), p.
066314
.10.1103/PhysRevE.81.066314
12.
Squires
,
T. M.
,
2008
, “
Electrokinetic Flows Over Inhomogeneously Slipping Surfaces
,”
Phys. Fluids
,
20
(
9
), p.
092105
.10.1063/1.2978954
13.
Ng
,
C.-O.
, and
Chu
,
H. C.
,
2011
, “
Electrokinetic Flows Through a Parallel-Plate Channel With Slipping Stripes on Walls
,”
Phys. Fluids
,
23
(
10
), p.
102002
.10.1063/1.3647582
14.
Belyaev
,
A. V.
, and
Vinogradova
,
O. I.
,
2011
, “
Electro-Osmosis on Anisotropic Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
107
(
9
), p.
098301
.10.1103/PhysRevLett.107.098301
15.
De
,
S.
,
Bhattacharyya
,
S.
, and
Hardt
,
S.
,
2015
, “
Electroosmotic Flow in a Slit Nanochannel With Superhydrophobic Walls
,”
Microfluid. Nanofluid.
,
19
(
6
), pp.
1465
1476
.10.1007/s10404-015-1660-7
16.
Bhattacharyya
,
S.
, and
Pal
,
S.
,
2018
, “
Enhanced Electroosmotic Flow in a Nano-Channel Patterned With Curved Hydrophobic Strips
,”
Appl. Math. Modell.
,
54
, pp.
567
579
.10.1016/j.apm.2017.10.013
17.
Bhattacharyya
,
S.
, and
Bag
,
N.
,
2019
, “
Enhanced Electroosmotic Flow of Herschel–Bulkley Fluid in a Channel Patterned With Periodically Arranged Slipping Surfaces
,”
Phys. Fluids
,
31
(
7
), p.
072007
.10.1063/1.5098508
18.
Muñoz
,
J.
,
Arcos
,
J.
,
Bautista
,
O.
, and
Méndez
,
F.
,
2018
, “
Slippage Effect on the Dispersion Coefficient of a Passive Solute in a Pulsatile Electro-Osmotic Flow in a Microcapillary
,”
Phys. Rev. Fluids
,
3
(
8
), p.
084503
.10.1103/PhysRevFluids.3.084503
19.
Arcos
,
J.
,
Méndez
,
F.
,
Bautista
,
E.
, and
Bautista
,
O.
,
2018
, “
Dispersion Coefficient in an Electro-Osmotic Flow of a Viscoelastic Fluid Through a Microchannel With a Slowly Varying Wall Zeta Potential
,”
J. Fluid Mech.
,
839
, pp.
348
386
.10.1017/jfm.2018.11
20.
Mondal
,
A.
, and
Shit
,
G.
,
2018
, “
Electro-Osmotic Flow and Heat Transfer in a Slowly Varying Asymmetric Micro-Channel With Joule Heating Effects
,”
Fluid Dyn. Res.
,
50
(
6
), p.
065502
.10.1088/1873-7005/aad590
21.
Shit
,
G.
, and
Majee
,
S.
,
2018
, “
Magnetic Field Interaction With Blood Flow and Heat Transfer Through Diseased Artery Having Abdominal Aortic Aneurysm
,”
Eur. J. Mech.-B/Fluids
,
71
, pp.
1
14
.10.1016/j.euromechflu.2018.03.010
22.
Shit
,
G.
, and
Majee
,
S.
,
2018
, “
Computational Modeling of Mhd Flow of Blood and Heat Transfer Enhancement in a Slowly Varying Arterial Segment
,”
Int. J. Heat Fluid Flow
,
70
, pp.
237
246
.10.1016/j.ijheatfluidflow.2018.02.016
23.
Ranjit
,
N.
,
Shit
,
G.
, and
Tripathi
,
D.
,
2019
, “
Entropy Generation and Joule Heating of Two Layered Electroosmotic Flow in the Peristaltically Induced Micro-Channel
,”
Int. J. Mech. Sci.
,
153–154
, pp.
430
444
.10.1016/j.ijmecsci.2019.02.022
24.
Wang
,
C.
,
2003
, “
Flow Over a Surface With Parallel Grooves
,”
Phys. Fluids
,
15
(
5
), pp.
1114
1121
.10.1063/1.1560925
25.
Mohammadi
,
A.
, and
Floryan
,
J.
,
2015
, “
Numerical Analysis of Laminar-Drag-Reducing Grooves
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041201
.10.1115/1.4028842
26.
DeGroot
,
C.
,
Wang
,
C.
, and
Floryan
,
J.
,
2016
, “
Drag Reduction Due to Streamwise Grooves in Turbulent Channel Flow
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121201
.10.1115/1.4034098
27.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
381
411
.10.1146/annurev.fluid.36.050802.122124
28.
Bhattacharyya
,
S.
, and
Bag
,
N.
,
2017
, “
Enhanced Electroosmotic Flow Through a Nanochannel Patterned With Transverse Periodic Grooves
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081203
.10.1115/1.4036265
29.
Zimmerman
,
W.
,
Rees
,
J.
, and
Craven
,
T.
,
2006
, “
Rheometry of Non-Newtonian Electrokinetic Flow in a Microchannel t-Junction
,”
Microfluid. Nanofluid.
,
2
(
6
), pp.
481
492
.10.1007/s10404-006-0089-4
30.
Casson
,
N.
,
1959
, “
A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type
,”
Rheology of Disperse Systems
,
Pergamon Press
,
Oxford, UK
.
31.
Herschel
,
W.
, and
Bulkley
,
R.
,
1926
, “
Measurement of Consistency as Applied to Rubber-Benzene Solutions
,”
Am. Soc. Test Proc.
,
26
(
2
), pp.
621
633
.
32.
Bingham
,
E. C.
,
1922
,
Fluidity and Plasticity
, Vol.
2
,
McGraw-Hill
,
New York
.
33.
Choi
,
D.-S.
,
Yun
,
S.
, and
Choi
,
W.
,
2018
, “
An Exact Solution for Power-Law Fluids in a Slit Microchannel With Different Zeta Potentials Under Electroosmotic Forces
,”
Micromachines
,
9
(
10
), p.
504
.10.3390/mi9100504
34.
Zhao
,
C.
, and
Yang
,
C.
,
2013
, “
Electroosmotic Flows of Non-Newtonian Power-Law Fluids in a Cylindrical Microchannel
,”
Electrophoresis
,
34
(
5
), pp.
662
667
.10.1002/elps.201200507
35.
Owens
,
R. G.
,
2006
, “
A New Microstructure-Based Constitutive Model for Human Blood
,”
J. Non-Newtonian Fluid Mech.
,
140
(
1–3
), pp.
57
70
.10.1016/j.jnnfm.2006.01.015
36.
Dilip
,
D.
,
Jha
,
N. K.
,
Govardhan
,
R. N.
, and
Bobji
,
M.
,
2014
, “
Controlling Air Solubility to Maintain “Cassie” State for Sustained Drag Reduction
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
459
, pp.
217
224
.10.1016/j.colsurfa.2014.07.006
37.
Haque
,
A.
,
Nayak
,
A.
,
Soni
,
B.
, and
Majhi
,
M.
,
2018
, “
Thermosolutal Hydromagnetic Convection of Power Law Fluids in an Enclosure With Periodic Active Zones
,”
Int. J. Heat Mass Transfer
,
127
, pp.
622
642
.10.1016/j.ijheatmasstransfer.2018.08.038
38.
Banerjee
,
A.
, and
Nayak
,
A.
,
2019
, “
Influence of Varying Zeta Potential on Non-Newtonian Flow Mixing in a Wavy Patterned Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
269
, pp.
17
27
.10.1016/j.jnnfm.2019.05.007
39.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
,
2007
,
Transport Phenomena
, 2nd ed.,
John Wiley & Sons
,
New York
(revised).
40.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
,
2006
,
Electrokinetic and Colloid Transport Phenomena
,
Wiley
,
Hoboken, NJ
.
41.
Banerjee
,
A.
,
Nayak
,
A.
,
Haque
,
A.
, and
Weigand
,
B.
,
2018
, “
Induced Mixing Electrokinetics in a Charged Corrugated Nano-Channel: Towards a Controlled Ionic Transport
,”
Microfluid. Nanofluid.
,
22
(
10
), p.
115
.10.1007/s10404-018-2128-3
42.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
,
2008
, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
326
(
2
), pp.
503
510
.10.1016/j.jcis.2008.06.028
43.
Patankar
,
S.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.