Abstract

The on-wall structures in an attachment-line flow are discussed based on an exact solution of the Navier–Stokes (NS) equations, focusing on distinct features of skin friction, surface pressure, and boundary enstrophy flux (BEF) and intrinsic connections between them.

References

References
1.
Lighthill
,
M. J.
,
1963
, “
Introduction of Boundary Layer Theory
,”
Laminar Boundary Layers
,
L.
Rosenhead
, ed.,
Oxford University Press
,
Oxford, UK
, pp.
46
113
.
2.
Hunt
,
J. C. R.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
,
1978
, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
,
88
, pp.
179
200
.10.1017/S0022112078001068
3.
Tobak
,
M.
, and
Peake
,
D. J.
,
1982
, “
Topology of Three-Dimensional Separation Flows
,”
Annu. Rev. Fluid Mech.
,
14
(
1
), pp.
61
85
.10.1146/annurev.fl.14.010182.000425
4.
Délery
,
J. M.
,
2001
, “
Robert Legendre and Henri Werle: Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
129
154
.10.1146/annurev.fluid.33.1.129
5.
Perry
,
A. E.
, and
Chong
,
M. S.
,
1987
, “
A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
125
155
.10.1146/annurev.fl.19.010187.001013
6.
Wu
,
J. Z.
,
Tramel
,
R. W.
,
Zhu
,
F. L.
, and
Yin
,
X. Y.
,
2000
, “
A Vorticity Dynamics Theory of Three-Dimensional Flow Separation
,”
Phys. Fluids
,
12
(
8
), pp.
1932
1954
.10.1063/1.870442
7.
Surana
,
A.
,
Grunberg
,
O.
, and
Haller
,
G.
,
2006
, “
Exact Theory of Three-Dimensional Flow Separation—Part 1: Steady Separation
,”
J. Fluid Mech.
,
564
, pp.
57
103
.10.1017/S0022112006001200
8.
Hirschel
,
E. H.
,
Cousteix
,
J.
, and
Kordulla
,
W.
,
2014
,
Three-Dimensional Attached Viscous Flows
,
Springer
,
Berlin
, Chap. 7.
9.
Dorrepaal
,
J. M.
,
1986
, “
An Exact Solution of the Navier-Stokes Equation Which Describes Non-Orthogonal Stagnation-Point Flow in Two Dimensions
,”
J. Fluid Mech.
,
163
, pp.
141
147
.10.1017/S0022112086002240
10.
Liu
,
T.
,
1992
, “
Nonorthogonal Stagnation Flow on the Surface of a Quiescent Fluid—An Exact Solution of the Navier-Stokes Equation
,”
Q. Appl. Math.
,
50
(
1
), pp.
39
47
.10.1090/qam/1146622
11.
Cebeci
,
T.
,
1974
, “
Attached-Line Flow on Infinite Swept Wing
,”
AIAA J.
,
12
(
2
), pp.
242
246
.10.2514/3.49207
12.
Perez
,
J. M.
,
Rodriguez
,
D.
, and
Theofilis
,
V.
, “
Linear Global Instability of Non-Orthogonal Incompressible Swept Attachment-Line Boundary-Layer Flow
,”
J. Fluids Mech.
,
710
, pp.
131
153
.10.1017/jfm.2012.354
13.
Liu
,
T.
,
Misaka
,
T.
,
Asai
,
K.
,
Obayashi
,
S.
, and
Wu
,
J. Z.
,
2016
, “
Feasibility of Skin-Friction Diagnostics Based on Surface Pressure Gradient Field
,”
Meas. Sci. Technol.
,
27
(
12
), p.
125304
.10.1088/0957-0233/27/12/125304
14.
Liu
,
T.
,
2018
, “
Skin-Friction and Surface-Pressure Structures in Near-Wall Flows
,”
AIAA J.
,
56
(
10
), pp.
3887
3896
.10.2514/1.J057216
15.
Hall
,
P.
, and
Malik
,
M. R.
,
1986
, “
On the Instability of a Three-Dimensional Attachment-Line Boundary Layer: Weakly Nonlinear Theory and a Numerical Approach
,”
J. Fluid Mech.
,
163
, pp.
257
282
.10.1017/S002211208600229X
16.
Hall
,
P.
,
Malik
,
M. R.
, and
Poll
,
D. I. A.
,
1984
, “
On the Stability of an Infinite Swept Attachment-Line Boundary Layer
,”
Proc. R. Soc. London, Ser. A
,
395
(
1809
), pp.
229
245
.10.1098/rspa.1984.0099
17.
Hall
,
P.
, and
Seddougui
,
S. O.
,
1990
, “
Wave Interactions in a Three-Dimensional Attachment-Line Boundary Layer
,”
J. Fluid Mech.
,
217
, pp.
367
390
.10.1017/S0022112090000763
18.
Theofilis
,
V.
,
Fedorov
,
A.
,
Obrist
,
D.
, and
Dallman
,
U. C.
,
2003
, “
The Extended Görtler–Hämmerlin Model for Linear Instability of Three-Dimensional Incompressible Swept Attachment-Line Boundary Layer Flow
,”
J. Fluid Mech.
,
487
, pp.
271
313
.10.1017/S0022112003004762
You do not currently have access to this content.