Abstract

A previously presented overset mesh enabled hybridizable discontinuous Galerkin (HDG) finite element method is extended in this work to an isentropic compressible (pseudo-compressible) fluid. This formulation is a first-principles approach and is complementary to the augmented Lagrangian approach that was utilized in the previous HDG incompressible Navier–Stokes formulations which eliminate the global pressure field. This is the first original presentation combining overset meshes, HDG, and fluid flow, specifically isentropic flow for low Mach number applications. Verification of the code implementation of the proposed overset-HDG formulation is performed via the method of manufactured solutions (MMS) on a successively refined overset mesh configuration containing five meshes, and for order k=1,,4, Lagrange polynomial elements in both two and three dimensions. Optimal order convergence, k +1, can be observed in all fields for both the two- and three-dimensional simulations, for each mesh. A two-dimensional benchmark problem is also presented to enable code-to-code comparison as a preliminary validation exercise.

References

References
1.
Kauffman
,
J. A.
,
Sheldon
,
J. P.
, and
Miller
,
S. T.
,
2017
, “
Overset Meshing Coupled With Hybridizable Discontinuous Galerkin Finite Elements
,”
Int. J. Numer. Methods Eng.
,
112
(
5
), p.
403
.10.1002/nme.5512
2.
Chan
,
W. M.
,
2009
, “
Overset Grid Technology Development at NASA Ames Research Center
,”
Comput. Fluids
,
38
, pp.
496
503
.10.1016/j.compfluid.2008.06.009
3.
Sherer
,
S. E.
,
Visbal
,
M. R.
, and
Galbraith
,
M. C.
,
2006
, “
Automated Preprocessing Tools for Use With a High–Order Overset–Grid Algorithm
,”
AIAA
Paper No. 2006-1147.10.2514/6.2006-1147
4.
Bodony
,
D. J.
,
Zagaris
,
G.
,
Reichert
,
A.
, and
Zhang
,
Q.
,
2011
, “
Provably Stable Overset Grid Methods for Computational Aeroacoustics
,”
J. Sound Vib.
,
330
(
17
), pp.
4161
4179
.10.1016/j.jsv.2011.02.010
5.
Noack
,
R. W.
,
2005
, “
SUGGAR: A General Capability for Moving Body Overset Grid Assembly
,”
AIAA
Paper No. 2005-5117.10.2514/6.2005-5117
6.
Noack
,
R. W.
,
Boger
,
D. A.
,
Kunz
,
R. F.
, and
Carrica
,
P. M.
,
2009
, “
Suggar++: An Improved General Overset Grid Assembly Capability
,”
AIAA
Paper No. 2009-3992.10.2514/6.2009-3992
7.
Abras
,
J. N.
,
Lynch
,
C. E.
, and
Smith
,
M. J.
,
2012
, “
Computational Fluid Dynamics–Computational Structural Dynamics Rotor Coupling Using an Unstructured Reynolds–Averaged Navier–Stokes Methodology
,”
J. Am. Helicopter Soc.
,
57
(
1
), pp.
1
14
.10.4050/JAHS.57.012001
8.
Foster
,
N. F.
, and
Noack
,
R. W.
,
2012
, “
High–Order Overset Interpolation Within an OVERFLOW Solution
,”
AIAA
Paper No. 2012-728.10.2514/6.2012-728
9.
Clark
,
C. G.
,
Lyons
,
D. G.
, and
Neu
,
W. L.
,
2014
, “
Comparison of Single and Overset Grid Techniques for CFD Simulations of a Surface Effect Ship
,”
ASME
Paper No. OMAE2014-24207.10.1115/OMAE2014-24207
10.
Östman
,
A.
,
Pakozdi
,
C.
,
Sileo
,
L.
,
Stansberg
,
C.-T.
, and
de Carvalho e Silva
,
D. F.
,
2014
, “
A Fully Nonliner RANS–VOF Numerical Wavetank Applied in the Analysis of Green Water on FPSO in Waves
,”
ASME
Paper No. OMAE2014-23927.10.1115/OMAE2014-23927
11.
Field
,
P. L.
, and
Neu
,
W. L.
,
2013
, “
Comparison of RANS and Potential Flow Force Comutations for One DOF Heave and Pitch of the ONR Tumblehome Hullform
,”
ASME
Paper No. OMAE2013-10562.10.1115/OMAE2013-10562
12.
Sengupta
,
T. K.
,
Suman
,
V.
, and
Singh
,
N.
,
2010
, “
Solving Navier–Stokes Equation for Flow Past Cylinders Using Single–Block Structured and Overset Grids
,”
J. Comput. Phys.
,
229
(
1
), pp.
178
199
.10.1016/j.jcp.2009.09.026
13.
Nastase
,
C.
,
Mavriplis
,
D.
, and
Sitaraman
,
J.
,
2011
, “
An Overset Unstructured Mesh Discontinuous Galerkin Approach for Aerodynamic Problems
,”
AIAA
Paper No. 2011-195.10.2514/6.2011-195
14.
Galbraith
,
M. C.
,
Benek
,
J. A.
,
Orkwis
,
P. D.
, and
Turner
,
M. G.
,
2014
, “
A Discontinuous Galerkin Chimera Scheme
,”
Comput. Fluids
,
98
, pp.
27
53
.10.1016/j.compfluid.2014.03.014
15.
Brazell
,
M. J.
,
Sitaraman
,
J.
, and
Mavriplis
,
D. J.
,
2016
, “
An Overset Mesh Approach for 3D Mixed Element High-Order Discretizations
,”
J. Comput. Phys.
,
322
, pp.
33
51
.10.1016/j.jcp.2016.06.031
16.
Cockburn
,
B.
,
Gopalakrishnan
,
J.
, and
Lazarov
,
R.
,
2009
, “
Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems
,”
SIAM J. Numer. Anal.
,
47
(
2
), pp.
1319
1365
.10.1137/070706616
17.
Sheldon
,
J. P.
,
Miller
,
S. T.
, and
Pitt
,
J. S.
,
2016
, “
A Hybridizable Discontinuous Galerkin Method for Modeling Fluid–Structure Interaction
,”
J. Comput. Phys.
,
326
, pp.
91
114
.10.1016/j.jcp.2016.08.037
18.
Cockburn
,
B.
, and
Gopalakrishnan
,
J.
,
2005
, “
Incompressible Finite Elements Via Hybridization—Part I: The Stokes System in Two Space Dimensions
,”
SIAM J. Numer. Anal.
,
43
(
4
), pp.
1627
1650
.10.1137/04061060X
19.
Cockburn
,
B.
, and
Gopalakrishnan
,
J.
,
2005
, “
Incompressible Finite Elements Via Hybridization—Part II: The Stokes System in Three Space Dimensions
,”
SIAM J. Numer. Anal.
,
43
(
4
), pp.
1651
1672
.10.1137/040610659
20.
Cockburn
,
B.
, and
Gopalakrishnan
,
J.
,
2009
, “
The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow
,”
SIAM J. Numer. Anal.
,
47
(
2
), pp.
1092
1125
.10.1137/080726653
21.
Cockburn
,
B.
,
Nguyen
,
N.
, and
Peraire
,
J.
,
2010
, “
A Comparison of HDG Methods for Stokes Flow
,”
J. Sci. Comput.
,
45
(
1–3
), pp.
215
237
.10.1007/s10915-010-9359-0
22.
Cockburn
,
B.
, and
Shi
,
K.
,
2014
, “
Devising HDG Method for Stokes Flow: An Overview
,”
Comput. Methods
,
98
, pp.
221
229
.10.1016/j.compfluid.2013.11.017
23.
Nguyen
,
N.
,
Peraire
,
J.
, and
Cockburn
,
B.
,
2010
, “
A Hybridizable Discontinuous Galerkin Method for Stokes Flow
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
9–12
), pp.
582
597
.10.1016/j.cma.2009.10.007
24.
Nguyen
,
N.
, and
Peraire
,
J.
,
2012
, “
Hybridizable Discontinuous Galerkin Method for Partial Differential Equations in Continuum Mechanics
,”
J. Comput. Phys.
,
231
(
18
), pp.
5955
5988
.10.1016/j.jcp.2012.02.033
25.
Wang
,
B.
, and
Khoo
,
B.
,
2013
, “
Hybridizable Discontinuous Galerkin Method (HDG) for Stokes Interface Flow
,”
J. Comput. Phys.
,
247
, pp.
262
278
.10.1016/j.jcp.2013.03.064
26.
Ahnert
,
T.
, and
Bärwolff
,
G.
,
2014
, “
Numerical Comparison of Hybridizable Discontinuous Galerkin and Finite Volume Methods for Incompressible Flow
,”
Int. J. Numer. Methods Fluids
,
76
(
5
), pp.
267
281
.10.1002/fld.3938
27.
Giorgiani
,
G.
,
Fernández-Méndez
,
S.
, and
Huerta
,
A.
,
2014
, “
Hybridizable Discontinuous Galerkin With Degree Adaptivity for the Incompressible Navier–Stokes Equations
,”
Comput. Fluids
,
98
, pp.
196
208
.10.1016/j.compfluid.2014.01.011
28.
Lehrenfeld
,
C.
, and
Schöberl
,
J.
,
2016
, “
High Order Exactly Divergence-Free Hybrid Discontinuous Galerkin Methods for Unsteady Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
307
, pp.
339
361
.10.1016/j.cma.2016.04.025
29.
Nguyen
,
N.
,
Peraire
,
J.
, and
Cockburn
,
B.
,
2011
, “
An Implicit High–Order Hybridizable Discontinuous Galerkin Method for the Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
230
(
4
), pp.
1147
1170
.10.1016/j.jcp.2010.10.032
30.
Peraire
,
J.
, and
Nguyen
,
N.
,
2010
, “
A Hybridizable Discontinuous Galerkin Method for the Compressible Euler and Navier–Stokes Equations
,”
AIAA
Paper No. 2010-363.10.2514/6.2010-363
31.
Schütz
,
J.
,
Woopen
,
M.
, and
May
,
G.
,
2012
, “
A Hybridizable DG/Mixed Scheme for Nonliner Advection–Diffusion Systems, Including the Compressible Navier–Stokes Equations
,”
AIAA
Paper No. 2012-729.10.2514/6.2012-729
32.
Schütz
,
J.
, and
May
,
G.
,
2013
, “
A Hybrid Mixed Method for Compressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
240
, pp.
58
75
.10.1016/j.jcp.2013.01.019
33.
Efendiev
,
Y.
,
Lazarov
,
R.
,
Moon
,
M.
, and
Shi
,
K.
,
2015
, “
A Spectral Multiscale Hybridizable Discontinuous Galerkin Method for Second Order Elliptic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
292
, pp.
243
256
.10.1016/j.cma.2014.09.036
34.
Samii
,
A.
,
Michoski
,
C.
, and
Dawson
,
C.
,
2016
, “
A Parallel and Adaptive Hybridized Discontinuous Galerkin Method for Anisotropic Nonhomogeneous Diffusion
,”
Comput. Methods Appl. Mech. Eng.
,
304
, pp.
118
139
.10.1016/j.cma.2016.02.009
35.
Fernandez
,
P.
,
Nguyen
,
N.
, and
Peraire
,
J.
,
2017
, “
The Hybridized Discontinuous Galerkin Method for Implicit Large-Eddy Simulation of Transitional Turbulent Flows
,”
J. Comput. Phys.
,
336
, pp.
308
329
.10.1016/j.jcp.2017.02.015
36.
Stanglmeier
,
M.
,
Nguyen
,
N.
,
Peraire
,
J.
, and
Cockburn
,
B.
,
2016
, “
An Explicit Hybridizable Discontinuous Galerkin Method for the Acoustic Wave Equation
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
748
769
.10.1016/j.cma.2015.12.003
37.
Kabaria
,
H.
,
Lew
,
A. J.
, and
Cockburn
,
B.
,
2015
, “
A Hybridizable Discontinuous Galerkin Formulation for Non-Linear Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
303
329
.10.1016/j.cma.2014.08.012
38.
Wulfinghoff
,
S.
,
Bayat
,
H. R.
,
Alipour
,
A.
, and
Reese
,
S.
,
2017
, “
A Low-Order Locking-Free Hybrid Discontinuous Galerkin Element Formulation for Large Deformations
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
353
372
.10.1016/j.cma.2017.05.018
39.
Cockburn
,
B.
,
2003
, “
Discontinuous Galerkin Methods
,”
ZAMM-J. Appl. Math. Mech.
,
83
(
11
), pp.
731
754
.10.1002/zamm.200310088
40.
Nguyen
,
N.
,
Peraire
,
J.
, and
Cockburn
,
B.
,
2011
, “
High-Order Implicit Hybridizable Discontinuous Galerkin Method for Acoustics and Elastodynamics
,”
J. Comput. Phys.
,
230
(
10
), pp.
3695
3718
.10.1016/j.jcp.2011.01.035
41.
Soon
,
S.
,
Cockburn
,
B.
, and
Stolarski
,
H. K.
,
2009
, “
A Hybridizable Discontinuous Galerkin Method for Linear Elasticity
,”
Int. J. Numer. Methods Eng.
,
80
(
8
), pp.
1058
1092
.10.1002/nme.2646
42.
Inagaki
,
M.
,
Murata
,
O.
,
Kondoh
,
T.
, and
Abe
,
K.
,
2002
, “
Numerical Prediction of Fluid-Resonant Oscillation at Low Mach Number
,”
AIAA J.
,
40
(
9
), pp.
1823
1829
.10.2514/2.1859
43.
Bagwell
,
T. G.
,
2006
, “
CFD Simulation of Flow Tones From Grazing Flow Past a Deep Cavity
,”
ASME
Paper No. IMECE2006-15633.10.1115/IMECE2006-15633
44.
Felippa
,
C. A.
,
2015
,
Introduction to Finite Element Methods
,
University of Colorado at Boulder
,
Boulder, CO
.
45.
Shen
,
J.
,
1997
, “
Pseudo-Compressibility Methods for the Unsteady Incompressible Navier–Stokes Equations
,”
Symposium on Nonlinear Evolution Equations and Infinite Dynamical Systems
, Beijing, China, pp.
68
78
. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.2539&rep=rep1&type=pdf
46.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Naiver–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(8), pp.
849
875
.10.1016/S0045-7930(99)00039-0
47.
Tang
,
H.
,
Jones
,
S. C.
, and
Sotiropoulos
,
F.
,
2003
, “
An Overset–Grid Method for 3D Unsteady Incompressible Flows
,”
J. Comput. Phys.
,
191
(
2
), pp.
567
600
.10.1016/S0021-9991(03)00331-0
48.
Pandya
,
S. A.
,
Venkateswaran
,
S.
, and
Pulliam
,
T. H.
,
2003
, “
Implementation of Preconditioned Dual-Time Procedures in Overflow
,”
AIAA
Paper No. 2003-72.10.2514/6.2003-72
49.
Simon
,
S. A.
,
Davis
,
D. W.
, and
Wagner
,
C. A.
,
2010
, “
Implementation of a Robust Multigrain Algorithm in a Production-Level Overset CFD Solver
,” AIAA Paper No. 2010-117.
50.
Rogers
,
S.
,
Kwak
,
D.
, and
Kaul
,
U.
,
1987
, “
On the Accuracy of the Pseudocompressibility Method in Solving the Incompressible Navier–Stokes Equations
,”
Appl. Math. Modell.
,
11
(
1
), pp.
35
44
.10.1016/0307-904X(87)90182-X
51.
Zhang
,
L. P.
, and
Wang
,
Z. J.
,
2000
, “
A Block LU-SGS Implicit Dual Time-Stepping Algorithm for Hybrid Dynamic Meshes
,”
Comput. Fluids
,
33
(
7
), pp.
891
916
.10.1016/j.compfluid.2003.10.004
52.
Rogers
,
S. E.
,
1995
, “
Comparison of Implicit Schemes for Incompressible Navier–Stokes Equations
,”
AIAA J.
,
33
(
11
), pp.
2066
2072
.10.2514/3.12948
53.
Klainerman
,
S.
, and
Majda
,
A.
,
1981
, “
Singular Limits of Quasilinear Hyperbolic Systems With Large Parameters and the Incompressible Limit of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
34
(
4
), pp.
481
524
.10.1002/cpa.3160340405
54.
Kiris
,
C. C.
,
Kwak
,
D.
, and
Rogers
,
S. E.
,
2003
, “
Incompressible Navier–Stokes Solvers in Primitive Variables and Their Applications to Steady and Unsteady Flow Simulations
,”
Numerical Simulations of Incompressible Flows
,
M.
Hafez
, ed.,
World Scientific
,
Hackensack, NJ
, pp.
3
34
.
55.
Cockburn
,
B.
,
Dong
,
B.
, and
Guzmàn
,
J.
,
2008
, “
A Superconvergent LDG–Hybridizable Galerkin Method for Second–Order Elliptic Problems
,”
Math. Comput.
,
77
(
264
), pp.
1887
1916
.10.1090/S0025-5718-08-02123-6
56.
Nguyen
,
N.
,
Peraire
,
J.
, and
Cockburn
,
B.
,
2010
, “
A Hybridizable Discontinuous Galerkin Method for the Incompressible Navier–Stokes Equations
,”
AIAA
Paper No. 2010-362.10.2514/6.2010-362
57.
Süli
,
E.
, and
Mayers
,
D. F.
,
2003
,
An Introduction to Numerical Analysis
,
Cambridge University Press
,
Cambridge, UK
.
58.
Quarteroni
,
A.
,
Sacco
,
R.
, and
Saleri
,
F.
,
2000
,
Numerical Mathematics
,
Springer
,
New York
.
59.
Davis
,
T.
,
2004
, “
Algorithm 832: Umfpack v4. 3—an Unsymmetric-Pattern Multifrontal Method
,”
ACM Trans. Math. Software (TOMS)
,
30
(
2
), pp.
196
199
.10.1145/992200.992206
60.
Salari
,
K.
, and
Knupp
,
P.
,
2000
, “
Code Verification by the Method of Manufactured Solutions
,” Sandia National Labs., Albuquerque, NM, Report No.
SAND2000-1444
. https://www.osti.gov/servlets/purl/759450
61.
Bangerth
,
W.
,
Heister
,
T.
,
Heltai
,
L.
,
Kanschat
,
G.
,
Kronbichler
,
M.
,
Maier
,
M.
,
Turcksin
,
B.
, and
Young
,
T. D.
, “
Deal.II Differential Equations Analysis Library, Technical Reference
,” University of Heidelberg, Heidelberg, Germany, accessed Aug. 30, 2014, http://www.dealii.org
62.
Bangerth
,
W.
,
Davydov
,
D.
,
Heister
,
T.
,
Heltai
,
L.
,
Kanschat
,
G.
,
Kronbichler
,
M.
,
Maier
,
M.
,
Turcksin
,
B.
, and
Wells
,
D.
,
2016
, “
The Deal.II Library, Version 8.4
,”
J. Numer. Math.
,
24
(
3
), pp.
135
141
. 10.1515/jnma-2016-1045
63.
Schäfer
,
M.
,
Turek
,
S.
,
Durst
,
F.
,
Krause
,
E.
, and
Rannacher
,
R.
,
1996
, “
Benchmark Computations of Laminar Flow Around a Cylinder
,”
Flow Simulation With High-Performance Computers II
,
Springer
,
Berlin
, pp.
547
566
.
64.
Turek
,
S.
, and
Becker
,
C.
,
1998
, “
FEATFLOW Finite Element Software for the Incompressible Navier–Stokes Equations
,” University of Heidelberg, Heidelberg, Germany, accessed Aug. 1,
2016
, www.featflow.de
You do not currently have access to this content.