Time-average velocity distribution in steady and uniform channel flows is important for fundamental research and practical application as it is always three-dimensional (3D), regardless of channel geometry. However, its determination has predominantly been carried out by using complex numerical software, even for the simplest geometry such as rectangular channels. The log-law was developed initially for circular pipe flows, where a single shear velocity is used to normalize the velocity (u+) and its distance (y+). Tracy and Lester found that the performance of the log-law can be extended to express velocity profiles in rectangular channels when the global shear velocities (gRS)0.5 and (ghS)0.5 are used to normalize the measured velocity u and its distance y. This study extends this discovery from the channel central line to the corner regions, and its general form of log-law was found to be valid even in trapezoidal or triangular open channels or closed ducts. This modified log-law can produce good agreement with the measured velocity with an average error of less than 5%. Therefore, this study provides a simple and reliable tool for engineers and researchers to estimate the velocity contours in straight and smooth channel flows.

References

1.
Millikan
,
C. B.
, 1938, “
A Critical Discussion of Turbulent Flow in Channels and Circular Tubes
,”
Fifth International Congress on Applied Mechanics
, Cambridge, MA, Sept. 12–16, pp.
386
392
.
2.
Nikuradse
,
J.
,
1933
, “
Gesetzmäßigkeiten Der Turbulenten Strömung in Glatten Rohren (Nachtrag)
,”
Forsch. Ingenieurwes.
,
4
(
1
), pp.
44
44
.
3.
Prandtl
,
L.
,
1925
, “
Bericht Uber Untersuchungen Zur Ausgebildeten Turbulenz
,”
Z. Angew. Math. Mech.
,
5
(
2
), pp.
136
139
.
4.
Rotta
,
J.
,
1962
, “
Turbulent Boundary Layers in Incompressible Flow
,”
Prog. Aerosp. Sci.
,
2
(
1
), p.
46
.
5.
Townsend
,
A. A.
,
1980
,
The Structure of Turbulent Shear Flow
,
Cambridge University Press
, Cambridge, UK.
6.
Von Kármán
,
T.
,
1930
, “
Mechanische Ahnlichkeit Und Turbulenz
,”
Math.-Phys. Klasse.
, 58, pp.
271
286
.
7.
Tracy
,
H. J.
, and
Lester
,
C.
,
1961
, “
Resistance Coefficients and Velocity Distribution Smooth Rectangular Channel
,” U.S. Geological Survey (USGS) Water-Supply Paper 1592-A, Washington, DC.
8.
Yang
,
S.-Q.
,
Lim
,
S.-Y.
, and
McCorquodale
,
J.
,
2005
, “
Investigation of Near Wall Velocity in 3-D Smooth Channel Flows
,”
J. Hydraul. Res.
,
43
(
2
), pp.
149
157
.
9.
Nikuradse
,
J.
,
1926
, “
Untersuchungen Uber Die Geschwindigkeits-Verteilung in Turbulenten Stromungen VDI
,” Diss. Gottingen,
Forschungsheft
, p. 281.
10.
Laufer
,
J.
,
1954
, “
The Structure of Turbulence in Fully Developed Pipe Flow
,” National Advisory Commitee for Aeronautics, Washington, DC, Report No.
1174
.https://digital.library.unt.edu/ark:/67531/metadc60553/
11.
Comte-Bellot
,
G.
,
1963
, “
Contribution à L'étude de la Turbulence de Conduite
,” Ph.D. thesis, These Presente a la Faculte des Sciences de l'Universite de Grenoble, Grenoble, France.
12.
Coantic
,
M.
,
1966
, “
Contribution à l'étude de la structure de la turbulence dans une conduite de section circulaire
,” Ph.D. thesis, de Doctorat ∼s-Sciences Physiques, Aix-Marseille University, Marseille, France.
13.
Zanoun
,
E.-S.
,
Durst
,
F.
, and
Nagib
,
H.
,
2003
, “
Evaluating the Law of the Wall in Two-Dimensional Fully Developed Turbulent Channel Flows
,”
Phys. Fluids
,
15
(
10
), pp.
3079
3089
.
14.
Keulegan
,
G. H.
,
1938
, “
Laws of Turbulent Flow in Open Channels
,”
Journal Research of the National Bureau of Standards U.S.
, National Bureau of Standards, Gaithersburg, MD.
15.
Prandtl
,
L.
,
1933
, “
Neuere Ergebnisse Der Turbulenzforschung
,”
VDI-Ztschr.
,
77
(
5
), p.
105
.
16.
Nezu
,
I.
, and
Nakagawa
,
H.
,
1993
, “
Turbulence in Open Channels
,”
IAHR/AIRH Monograph
,
Balkema, Rotterdam
,
The Netherlands
.
17.
Coles
,
D.
,
1956
, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
1
(
2
), pp.
191
226
.
18.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
,
2003
, “
Debate Concerning the Mean-Velocity Profile of a Turbulent Boundary Layer
,”
AIAA J.
,
41
(
4
), pp.
565
572
.
19.
Han
,
Y.
,
Yang
,
S.-Q.
,
Dharmasiri
,
N.
, and
Sivakumar
,
M.
,
2015
, “
Experimental Study of Smooth Channel Flow Division Based on Velocity Distribution
,”
J. Hydraul. Eng.
,
141
(
4
), p.
06014025
.
20.
Yang
,
S.-Q.
, and
McCorquodale
,
J. A.
,
2004
, “
Determination of Boundary Shear Stress and Reynolds Shear Stress in Smooth Rectangular Channel Flows
,”
J. Hydraul. Eng.
,
130
(
5
), pp.
458
462
.
21.
Afzal
,
N.
, and
Seena
,
A.
,
2018
, “
Mean Velocity, Reynolds Shear Stress, and Fluctuations of Velocity and Pressure Due to Log Laws in a Turbulent Boundary Layer and Origin Offset by Prandtl Transposition Theorem
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071204
.
22.
Berlamont
,
J. E.
,
Trouw
,
K.
, and
Luyckx
,
G.
,
2003
, “
Shear Stress Distribution in Partially Filled Pipes
,”
J. Hydraul. Eng.
,
129
(
9
), pp.
697
705
.
23.
Jin
,
Y.-C.
,
Zarrati
,
A.
, and
Zheng
,
Y.
,
2004
, “
Boundary Shear Distribution in Straight Ducts and Open Channels
,”
J. Hydraul. Eng.
,
130
(
9
), pp.
924
928
.
24.
Khalifa
,
M.
, and
Trupp
,
A.
,
1988
, “
Measurements of Fully Developed Turbulent Flow in a Trapezoidal Duct
,”
Exp. Fluids
,
6
(
5
), pp.
344
352
.
25.
Knight
,
D. W.
, and
Patel
,
H. S.
,
1985
, “
Boundary Shear in Smooth Rectangular Ducts
,”
J. Hydraul. Eng.
,
111
(
1
), pp.
29
47
.
26.
Melling
,
A. J.
,
1975
, “
Investigation of Flow in Non-Circular Ducts and Other Configurations by Laser Doppler Anemometry
,”
Ph.D. thesis
, University of London, London.https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.465524
27.
Nikuradse
,
J.
,
1930
, “
Untersuchungen Über Turbulente Strömungen in Nicht Kreisförmigen Rohren
,”
Ingenieur-Archiv.
,
1
(
3
), pp.
306
332
.
28.
Prinos
,
P.
,
Tavouiaris
,
S.
, and
Townsend
,
R.
,
1988
, “
Turbulence Measurements in Smooth and Rough-Walled Trapezoidal Ducts
,”
J. Hydraul. Eng.
,
114
(
1
), pp.
43
53
.
29.
Leighly
,
J. B.
,
1932
,
Toward a Theory of the Morphologic Significance of Turbulence in the Flow of Water in Streams
,
University of California Press
, Berkeley, CA.
30.
Yang
,
S.
,
1993
, “
The Law of Boundary Shear in Open Rectangular Channels
,”
J. Sediment Res.
, (3), pp.
95
103
.http://caod.oriprobe.com/articles/45846882/The_Law_of_Boundary_Shear_in_Open_Rectangular_Channels.htm
31.
Yang
,
S.-Q.
, and
Lim
,
S.-Y.
,
1997
, “
Mechanism of Energy Transportation and Turbulent Flow in a 3D Channel
,”
J. Hydraul. Eng.
,
123
(
8
), pp.
684
692
.
32.
Yang
,
S.-Q.
, and
Lim
,
S.-Y.
,
1998
, “
Boundary Shear Stress Distributions in Smooth Rectangular Open Channel Flows
,”
Proc. Inst. Civ. Eng. Water, Maritime Energy
,
130
(
3
), pp.
163
173
.
33.
Yang
,
S.-Q.
,
Han
,
Y.
,
Lin
,
P.
,
Jiang
,
C.
, and
Walker
,
R.
,
2014
, “
Experimental Study on the Validity of Flow Region Division
,”
J. Hydro-Environ. Res.
,
8
(
4
), pp.
421
427
.
34.
Lim
,
S.-Y.
, and
Yang
,
S.-Q.
,
2005
, “
Simplified Model of Tractive-Force Distribution in Closed Conduits
,”
J. Hydraul. Eng.
,
131
(
4
), pp.
322
329
.
35.
Wang
,
C.
,
2018
, “
Fully-Developed Flow in Semicircular and Isosceles Triangular Ducts With Nonuniform Slip
,”
ASME J. Fluids Eng.
,
140
(
12
), p.
121302
.
36.
Schlichting
,
H.
,
Kestin
,
J.
, and
Street
,
R. L.
,
1980
, “
Boundary-Layer Theory
,”
Am. Soc. Mech. Eng.
,
102
(1), pp.
145
164
.
37.
Han
,
Y.
,
2014
, “
Experimental Verification of Flow Divisibility in 3-D Laboratory Channels
,”
Ph.D. thesis
, University of Wollongong, Wollongong, Australia.https://ro.uow.edu.au/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=5151&context=theses
38.
Han
,
Y.
,
Yang
,
S.-Q.
,
Sivakumar
,
M.
, and
Qiu
,
L.-C.
,
2017
, “
Investigation of Velocity Distribution in Open Channel Flows Based on Conditional Average of Turbulent Structures
,”
Math. Probl. Eng.
, 2017, p. 1458591.
39.
Auel
,
C.
,
Albayrak
,
I.
, and
Boes
,
R. M.
,
2014
, “
Turbulence Characteristics in Supercritical Open Channel Flows: Effects of Froude Number and Aspect Ratio
,”
J. Hydraul. Eng.
,
140
(
4
), p.
04014004
.
40.
Kirkgöz
,
M. S.
,
1989
, “
Turbulent Velocity Profiles for Smooth and Rough Open Channel Flow
,”
J. Hydraul. Eng.
,
115
(
11
), pp.
1543
1561
.
41.
Kirkgöz
,
M. S.
, and
Ardiçlioğlu
,
M.
,
1997
, “
Velocity Profiles of Developing and Developed Open Channel Flow
,”
J. Hydraul. Eng.
,
123
(
12
), pp.
1099
1105
.
42.
Roussinova
,
V.
,
2009
, “
Turbulent Structures in Smooth and Rough Open Channel Flows: Effect of Depth
,”
Electronic theses and dissertation
, University of Windsor, Windsor, ON, Canada.https://core.ac.uk/download/pdf/72780239.pdf
43.
Sarkar
,
S.
,
2016
, “
Measurement of Turbulent Flow in a Narrow Open Channel
,”
J. Hydrol. Hydromech.
,
64
(
3
), pp.
273
280
.
44.
Cardoso
,
A.
,
Graf
,
W. H.
, and
Gust
,
G.
,
1989
, “
Uniform Flow in a Smooth Open Channel
,”
J. Hydraul. Res.
,
27
(
5
), pp.
603
616
.
45.
Nezu
,
I.
, and
Nakagawa
,
H.
,
1984
, “
Cellular Secondary Currents in Straight Conduit
,”
J. Hydraul. Eng.
,
110
(
2
), pp.
173
193
.
46.
Nezu
,
I.
, and
Rodi
,
W.
,
1986
, “
Open-Channel Flow Measurements With a Laser Doppler Anemometer
,”
J. Hydraul. Eng.
,
112
(
5
), pp.
335
355
.
47.
White
,
F.
,
1979
,
Fluid Mechanics
,
McGraw‐Hill
,
Columbus, OH
.
You do not currently have access to this content.