Abstract

This article reports flow behavior around a suspended cube obtained using three-dimensional (3D) lattice Boltzmann method (LBM)-based simulations. The Reynolds number (Re) range covered is from 84 to 770. Four different flow regimes are noted based on the flow structure in this range of Re: steady axisymmetric (84 ≤ Re ≤ 200), steady nonaxisymmetric (215 ≤ Re ≤ 250), unsteady nonaxisymmetric in one plane and axisymmetric in the other plane (276 ≤ Re ≤ 300), and unsteady nonaxisymmetric in streamwise orthogonal planes (339 ≤ Re ≤ 770). Recirculation length and drag coefficient follow inverse trend in the steady flow regime. The unsteady flow regime shows hairpin vortices for Re ≤ 300 and then it becomes structureless. The nature of force coefficients has been examined at various Reynolds numbers. Temporal behavior of force coefficients is presented along with phase dependence of side force coefficients. The drag coefficient decreases with increase in Reynolds number in the steady flow regime and the side force coefficients are in phase. Drag coefficients are compared with established correlations for flow around a cube and a sphere. The side force coefficients are perfectly correlated at Re = 215 and they are anticorrelated at Re = 250. At higher Reynolds numbers, side force coefficients are highly uncorrelated. This work adds to the existing understanding of flow around a cube reported earlier at low and moderate Re and extends it further to unsteady regime at higher Re.

References

References
1.
Basset
,
A. B.
,
1888
, “
On the Motion of a Sphere in a Viscous Liquid
,”
Philos. Trans. R. Soc. London, Ser. A
,
179
, pp.
43
63
.10.1098/rsta.1888.0003
2.
Roshko
,
A.
,
1955
, “
On the Wake and Drag of Bluff Bodies
,”
J. Aeronaut. Sci.
,
22
, pp.
124
132
.10.2514/8.3286
3.
Taneda
,
S.
,
1956
, “
Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers
,”
J. Phys. Soc. Jpn.
,
11
(
10
), pp.
1104
1108
.10.1143/JPSJ.11.1104
4.
Taneda
,
S.
,
1976
, “
Visual Study of Unsteady Separated Flows Around Bodies
,”
Prog. Aerosp. Sci.
,
17
, pp.
287
348
.10.1016/0376-0421(76)90011-7
5.
Taneda
,
S.
,
1978
, “
Visual Observations of the Flow Past a Sphere at Reynolds Numbers Between 104 and 106
,”
J. Fluid Mech.
,
85
(
1
), pp.
187
192
.10.1017/S0022112078000580
6.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1990
, “
A Study on Vortex Shedding From Spheres in a Uniform Flow
,”
ASME J. Fluids Eng.
,
112
(
4
), pp.
386
392
.10.1115/1.2909415
7.
Johnson
,
T. A.
, and
Patel
,
V. C.
,
1999
, “
Flow Past a Sphere Up to a Reynolds Number of 300
,”
J. Fluid Mech.
,
378
, pp.
19
70
.10.1017/S0022112098003206
8.
Achenbach
,
E.
,
1972
, “
Experiments on the Flow Past Spheres at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
54
(
3
), pp.
565
575
.10.1017/S0022112072000874
9.
Natarajan
,
R.
, and
Acrivos
,
A.
,
1993
, “
The Instability of the Steady Flow Past Spheres and Disks
,”
J. Fluid Mech.
,
254
, pp.
323
344
.10.1017/S0022112093002150
10.
Jang
,
Y. I.
, and
Lee
,
S. J.
,
2007
, “
Visualization of Turbulent Flow Around a Sphere at Subcritical Reynolds Numbers
,”
J. Visualization
,
10
(
4
), pp.
359
366
.10.1007/BF03181894
11.
Jang
,
Y. I.
, and
Lee
,
S. J.
,
2008
, “
PIV Analysis of Near-Wake Behind a Sphere at a Subcritical Reynolds Number
,”
Exp. Fluids
,
44
(
6
), pp.
905
914
.10.1007/s00348-007-0448-2
12.
Jang
,
Y. I.
, and
Lee
,
S. J.
,
2010
, “
POD Analysis on the Sphere Wake at a Subcritical Reynolds Number
,”
J. Visualization
,
13
(
4
), pp.
311
318
.10.1007/s12650-010-0055-9
13.
Morkovin
,
M.
,
1964
, “
Flow Around Circular Cylinders-A Kaleidoscope of Challenging Fluid Phenomena
,” Proceedings of ASME Symposium on Fully Separated Flow, Philadelphia, PA, pp.
102
118
.
14.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
9th ed.
,
Springer
,
Berlin
.
15.
Williamson
,
C. H.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.10.1146/annurev.fl.28.010196.002401
16.
Sharma
,
A.
, and
Eswaran
,
V.
,
2004
, “
Heat and Fluid Flow Across a Square Cylinder in the Two-Dimensional Laminar Flow Regime
,”
Numer. Heat Transfer, Part A
,
45
(
3
), pp.
247
269
.10.1080/10407780490278562
17.
Chauhan
,
M. K.
,
Dutta
,
S.
,
Gandhi
,
B. K.
, and
More
,
B. S.
,
2016
, “
Experimental Investigation of Flow Over a Transversely Oscillating Square Cylinder at Intermediate Reynolds Number
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051105
.10.1115/1.4031878
18.
Castro
,
I. P.
, and
Robins
,
A. G.
,
1977
, “
The Flow Around a Surface-Mounted Cube in Uniform and Turbulent Streams
,”
J. Fluid Mech.
,
79
(
2
), pp.
307
335
.10.1017/S0022112077000172
19.
Hunt
,
J. C. R.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
,
1978
, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
,
86
(
1
), pp.
179
200
.10.1017/S0022112078001068
20.
Hosker
,
R. P.
,
1984
, “
Flow and Diffusion Near Obstacles
,”
Atmos. Sci. Power Prod.
,
3
, pp.
241
326
.
21.
Haupt
,
S. E.
,
Zajaczkowski
,
F. J.
, and
Joel Peltier
,
L.
,
2011
, “
Detached Eddy Simulation of Atmospheric Flow About a Surface Mounted Cube at High Reynolds Number
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031002
.10.1115/1.4003649
22.
Yakhot
,
A.
,
Anor
,
T.
,
Liu
,
H.
, and
Nikitin
,
N.
,
2006
, “
Direct Numerical Simulation of Turbulent Flow Around a Wall-Mounted Cube: Spatio-Temporal Evolution of Large-Scale Vortices
,”
J. Fluid Mech.
,
566
(
1
), pp.
1
9
.10.1017/S0022112006002151
23.
Yakhot
,
A.
,
Liu
,
H.
, and
Nikitin
,
N.
,
2006
, “
Turbulent Flow Around a Wall-Mounted Cube: A Direct Numerical Simulation
,”
Int. J. Heat Fluid Flow
,
27
(
6
), pp.
994
1009
.10.1016/j.ijheatfluidflow.2006.02.026
24.
Curley
,
A.
,
Uddin
,
M.
, and
Peters
,
B.
,
2015
, “
Direct Numerical Simulation of Turbulent Flow Around a Surface Mounted Cube
,”
AIAA
Paper No. 2015-3431.10.2514/6.2015-3431
25.
Diaz-Daniel
,
C.
,
Laizet
,
S.
, and
Vassilicos
,
J. C.
,
2017
, “
Direct Numerical Simulations of a Wall-Attached Cube Immersed in Laminar and Turbulent Boundary Layers
,”
Int. J. Heat Fluid Flow
,
68
, pp.
269
280
.10.1016/j.ijheatfluidflow.2017.09.015
26.
Raul
,
R.
,
Bernard
,
P. S.
, and
Buckley
,
F. T.
,
1990
, “
An Application of the Vorticity–Vector Potential Method to Laminar Cube Flow
,”
Int. J. Numer. Methods Fluids
,
10
(
8
), pp.
875
888
.10.1002/fld.1650100803
27.
Hölzer
,
A.
, and
Sommerfeld
,
M.
,
2009
, “
Lattice Boltzmann Simulations to Determine Drag, Lift and Torque Acting on Non-Spherical Particles
,”
Comput. Fluids
,
38
(
3
), pp.
572
589
.10.1016/j.compfluid.2008.06.001
28.
Zastawny
,
M.
,
Mallouppas
,
G.
,
Zhao
,
F.
, and
Van Wachem
,
B.
,
2012
, “
Derivation of Drag and Lift Force and Torque Coefficients for NonSpherical Particles in Flows
,”
Int. J. Multiphase Flow
,
39
, pp.
227
239
.10.1016/j.ijmultiphaseflow.2011.09.004
29.
Richter
,
A.
, and
Nikrityuk
,
P. A.
,
2013
, “
New Correlations for Heat and Fluid Flow Past Ellipsoidal and Cubic Particles at Different Angles of Attack
,”
Powder Technol.
,
249
, pp.
463
474
.10.1016/j.powtec.2013.08.044
30.
Raul
,
R.
, and
Bernard
,
P. S.
,
1991
, “
A Numerical Investigation of the Turbulent Flow Field Generated by a Stationary Cube
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
216
222
.10.1115/1.2909483
31.
Saha
,
A. K.
,
2004
, “
Three-Dimensional Numerical Simulations of the Transition of Flow Past a Cube
,”
Phys. Fluids
,
16
(
5
), pp.
1630
1646
.10.1063/1.1688324
32.
Saha
,
A. K.
,
2006
, “
Three-Dimensional Numerical Study of Flow and Heat Transfer From a Cube Placed in a Uniform Flow
,”
Int. J. Heat Fluid Flow
, 27(1), pp.
80
94
.10.1016/j.ijheatfluidflow.2005.05.002
33.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
,
Bubbles, Drops, and Particles
,
Academic Press
,
New York
.
34.
Klotz
,
L.
,
Goujon-Durand
,
S.
,
Rokicki
,
J.
, and
Wesfreid
,
J. E.
,
2014
, “
Experimental Investigation of Flow Behind a Cube for Moderate Reynolds Numbers
,”
J. Fluid Mech.
,
750
, pp.
73
98
.10.1017/jfm.2014.236
35.
Khan
,
M. H.
,
Sooraj
,
P.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2018
, “
Flow Around a Cube for Reynolds Numbers Between 500 and 55,000
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
257
271
.10.1016/j.expthermflusci.2017.12.013
36.
Mei
,
R.
,
Shyy
,
W.
,
Yu
,
D.
, and
Luo
,
L.-S.
,
2000
, “
Lattice Boltzmann Method for 3D Flows With Curved Boundary
,”
J. Comput. Phys.
,
161
(
2
), pp.
680
699
.10.1006/jcph.2000.6522
37.
Guo
,
Z.
, and
Shu
,
C.
,
2013
,
Lattice Boltzmann Method and Its Applications in Engineering
, Vol.
3
,
World Scientific
,
Singapore
.
38.
Agrawal
,
A.
, and
Agrawal
,
A.
,
2006
, “
Three-Dimensional Simulation of Gaseous Slip Flow in Different Aspect Ratio Microducts
,”
Phys. Fluids
,
18
(
10
), p.
103604
.10.1063/1.2354546
39.
Kumar
,
S. R.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2008
, “
Simulation of Flow Around a Row of Square Cylinders
,”
J. Fluid Mech.
,
606
, pp.
369
397
.10.1017/S0022112008001924
40.
Sewatkar
,
C. M.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2009
, “
On the Effect of Reynolds Number for Flow Around a Row of Square Cylinders
,”
Phys. Fluids
,
21
(
8
), p.
083602
.10.1063/1.3210769
41.
Sewatkar
,
C. M.
,
Patel
,
R.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2012
, “
Flow Around Six In-Line Square Cylinders
,”
J. Fluid Mech.
,
710
, pp.
195
233
.10.1017/jfm.2012.359
42.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
43.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
,
Oxford University Press
,
Oxford, UK
.
44.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications With Computer Codes
,
Springer Science & Business Media
,
Berlin
.
45.
Krishnan
,
H.
, and
Agrawal
,
A.
,
2017
, “
Lattice Boltzmann Method
,”
The CRC Handbook of Thermal Engineering
,
R. P.
Chhabra
, ed.,
2nd ed.
,
CRC Press
,
Boca Raton, FL
, Chap. 5.5.
46.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases—I: Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), p.
511
.10.1103/PhysRev.94.511
47.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier-Stokes Equation
,”
Phys. Rev. Lett.
,
56
(
14
), p.
1505
.10.1103/PhysRevLett.56.1505
48.
Agrawal
,
A.
,
Djendi
,
L.
, and
Antonia
,
R. A.
,
2006
, “
Investigation of Flow Around a Pair of Side-by-Side Square Cylinders Using the Lattice Boltzmann Method
,”
Comput. Fluids
,
35
, pp.
1093
1107
.10.1016/j.compfluid.2005.05.008
49.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
50.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
51.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.10.1016/j.jcp.2014.01.006
52.
Mizushima
,
J.
, and
Akinaga
,
T.
,
2003
, “
Vortex Shedding From a Row of Square Bars
,”
Fluid Dyn. Res.
,
32
(
4
), pp.
179
191
.10.1016/S0169-5983(03)00016-9
53.
Achenbach
,
E.
,
1974
, “
Vortex Shedding From Spheres
,”
J. Fluid Mech.
,
62
(
2
), pp.
209
221
.10.1017/S0022112074000644
54.
Richter
,
A.
, and
Nikrityuk
,
P. A.
,
2012
, “
Drag Forces and Heat Transfer Coefficients for Spherical, Cuboidal and Ellipsoidal Particles in Cross Flow at Sub-Critical Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1343
1354
.10.1016/j.ijheatmasstransfer.2011.09.005
55.
Hölzer
,
A.
, and
Sommerfeld
,
M.
,
2008
, “
New Simple Correlation Formula for the Drag Coefficient of Non-Spherical Particles
,”
Powder Technol.
,
184
(
3
), pp.
361
365
.10.1016/j.powtec.2007.08.021
56.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.10.1016/0032-5910(89)80008-7
57.
Tran-Cong
,
S.
,
Gay
,
M.
, and
Michaelides
,
E. E.
,
2004
, “
Drag Coefficients of Irregularly Shaped Particles
,”
Powder Technol.
,
139
(
1
), pp.
21
32
.10.1016/j.powtec.2003.10.002
58.
Almedeij
,
J.
,
2008
, “
Drag Coefficient of Flow Around a Sphere: Matching Asymptotically the Wide Trend
,”
Powder Technol.
,
186
(
3
), pp.
218
223
.10.1016/j.powtec.2007.12.006
59.
Guan
,
Y.
,
Guadarrama-Lara
,
R.
,
Jia
,
X.
,
Zhang
,
K.
, and
Wen
,
D.
,
2017
, “
Lattice Boltzmann Simulation of Flow Past a Non-Spherical Particle
,”
Adv. Powder Technol.
,
28
(
6
), pp.
1486
1494
.10.1016/j.apt.2017.03.018
60.
Mittal
,
R.
,
1999
, “
Planar Symmetry in the Unsteady Wake of a Sphere
,”
AIAA J.
,
37
(
3
), pp.
388
390
.10.2514/2.722
61.
Mittal
,
R.
,
Wilson
,
J. J.
, and
Najjar
,
F. M.
,
2002
, “
Symmetry Properties of the Transitional Sphere Wake
,”
AIAA J.
,
40
(
3
), pp.
579
582
.10.2514/2.1686
You do not currently have access to this content.