Abstract

A temporal linear instability analysis was performed for a liquid sheet moving around the inviscid gas in transverse electrical field. The fluid was described by the leaky-dielectric model, which is more complex and more comparable to the liquid electrical properties than existing models. As a result, the sinuous and the varicose modes exist, in which the dimensionless dispersion relation between wave number and temporal growth rate can be derived as a 3 × 3 matrix. According to this relationship, the effects of liquid properties on sheet instability were performed. It was concluded that, as the electrical Euler number (Eu), the ratio of gas-to-liquid density (ρ), Weber number (We), Reynolds number (Re), and the relative relaxation time (τ) increased, the instability of the sheet was enhanced. This work also compared the leaky-dielectric model with the perfect conductor model and found that the unstable growth rate in the leaky-dielectric model was higher than the one in the perfect conductor model. Moreover, as the ratio of gas-to-liquid improved, this difference decreased. Finally, an energy approach was adopted to investigate the instability mechanism for the two models.

References

References
1.
Squire
,
H. B.
,
1953
, “
Investigation of the Instability of a Moving Liquid Film
,”
Br. J. Appl. Phys.
, 4(6), pp.
167
169
.10.1017/S0022112002001957
2.
Jones
,
A. R.
, and
Thong
,
K. C.
,
1971
, “
The Production of Charged Monodisperse Fuel Droplets by Electrical Dispersion
,”
J. Phys. D: Apps. Phys.
,
4
(
8
), pp.
1159
1166
.10.1088/0022-3727/4/8/316
3.
Tomita
,
Y.
,
Ishibashi
,
I.
, and
Yokoyama
,
T.
,
1986
, “
Fundamental Studies on an Electrostatic Ink Jet Printer: 1st Report, Electrostatic Drop Formation
,”
Bull. Jpn. Soc. Mech. Eng.
,
29
(
257
), pp.
3737
3743
.10.1299/jsme1958.29.3737
4.
Qian
,
S. Z.
, and
Haim
,
H. B.
,
2005
, “
Theoretical Investigation of Electro-Osmotic Flows and Chaotic Stirring in Rectangular Cavities
,”
Appl. Math. Modell.
,
29
(
8
), pp.
726
753
.10.1016/j.apm.2004.10.006
5.
Zhou
,
T.
,
Shi
,
L.
,
Fan
,
C.
,
Liang
,
D.
,
Weng
,
S.
, and
Joo
,
S. W.
,
2017
, “
A Novel Scalable Microfluidic Load Sensor Based on Electrokinetic Phenomena
,”
Microfluid. Nanofluid.
,
21
(
4
), p.
59
.10.1007/s10404-017-1895-6
6.
Zhou
,
T.
,
Ge
,
J.
,
Shi
,
L.
,
Fan
,
J.
,
Liu
,
Z.
, and
Woo Joo
,
S.
,
2018
, “
Dielectrophoretic Choking Phenomenon of a Deformable Particle in a Converging-Diverging Microchannel
,”
Electrophoresis
,
39
(
4
), pp.
590
596
.10.1002/elps.201700250
7.
Zhou
,
T.
,
Ji
,
X.
,
Shi
,
L.
,
Zhang
,
X.
,
Deng
,
Y.
, and
Joo
,
S. W.
,
2019
, “
Dielectrophoretic Choking Phenomenon in a Converging-Diverging Microchannel for Janus Particles
,”
Electrophoresis
,
40
(
6
), pp.
993
999
.10.1002/elps.201800368
8.
Zhou
,
T.
,
2018
, “
The Mechanism of Size-Based Particle Separation by Dielectrophoresis in the Viscoelastic Flows
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091302
.10.1115/1.4039709
9.
Hagerty
,
W. W.
, and
Shea
,
J. F.
,
1955
, “
A Study of the Stability of Plane Fluid Sheets
,”
ASME J. Appl. Mech.
,
22
, pp.
509
514
.
10.
Lin
,
S. P.
,
1981
, “
Stability of a Viscous Liquid Curtain
,”
J. Fluid Mech.
,
104
, pp.
111
118
.10.1017/S002211208100284X
11.
Li
,
X.
,
1994
, “On the Instability of Plane Liquid Sheets In Two Gas Streams of Unequal Velocities,”
Acta Mechanica.
, 106(3–4), pp.
137
156
.10.1007/bf01213559
12.
Li
,
X. R.
, and
Tankin
,
S.
,
1991
, “
On the Temporal Instability of a Two-Dimensional Viscous Liquid Sheet
,”
J. Fluid Mech.
,
226
, pp.
425
443
.10.1017/S0022112091002458
13.
Li
,
H. S.
, and
Kelly
,
R. E.
,
1992
, “
The Instability of a Liquid Jet in a Compressible Airstream
,”
Phys. Fluids A
,
4
(
10
), pp.
2162
2168
.10.1063/1.858459
14.
Cao
,
J.
, and
Li
,
X.
,
2000
, “
Stability of Plane Liquid Sheets in Compressible Gas Streams
,”
J. Propul. Power
,
16
(
4
), pp.
623
627
.10.2514/2.5618
15.
Lin
,
S. P.
,
Lian
,
Z. W.
, and
Creighton
,
B. J.
,
1990
, “
Absolute and Convective Instability of a Liquid Sheet
,”
J. Fluid Mech.
,
220
, pp.
673
689
.10.1017/S0022112090003421
16.
Li
,
X.
,
1993
, “
Spatial Instability of Plane Liquid Sheets
,”
Chem. Eng. Sci.
,
48
(
16
), pp.
2973
2981
.10.1016/0009-2509(93)80042-O
17.
Arai
,
T.
, and
Hashimoto
,
H.
,
1986
, “
Disintegration of a Thin Liquid Sheet in a Concurrent Gas Stream
,”
Int. J. Turbo Jet-Engines
,
3
, pp.
301
306
.
18.
El-Sayed
,
M. F.
,
2004
, “
Three-Dimensional Electrohydrodynamic Temporal Instability of a Moving Dielectric Liquid Sheet Emanated in to a Gas Medium
,”
Eur. Phys. J. E
,
15
(
4
), pp.
443
455
.10.1140/epje/i2004-10076-2
19.
Yang
,
L.-J.
,
Liu
,
Y.-X.
,
Fu
,
Q.-F.
,
Wang
,
C.
, and
Ning
,
Y.
,
2012
, “
Linear Stability Analysis of Electrified Viscoelastic Liquid Sheets
,”
Atomization Sprays
,
22
(
11
), pp.
951
982
.10.1615/AtomizSpr.2013006406
20.
Taylor
,
G. I.
, and
McEwan
,
A. D.
,
1965
, “
The Stability of Horizontal Fluid Interface in a Vertical Electric Field
,”
J. Fluids Mech.
,
22
(
1
), pp.
1
15
.10.1017/S0022112065000538
21.
Melcher
,
J. R.
, and
Warren
,
E. P.
,
1971
, “
Electrohydrodynamics of a Current-Carrying Semi-Insulating Jet
,”
J. Fluids Mech.
,
47
(
1
), pp.
127
143
.10.1017/S0022112071000971
22.
Taylor
,
G. I.
,
1996
, “Studies in Electrohydrodynamics—I:
The Circulation Produced in a Drop by Electrical Field,” Proc. R. Soc. London, Ser. A
,
291
, pp.
159
166
.
23.
Fish
,
B. R.
,
1972
, “
Electrical Generation of Natural Aerosols From Vegetation
,”
Science
,
175
(
4027
), pp.
1239
1240
.10.1126/science.175.4027.1239
24.
Saville
,
D. A.
,
1997
, “
Electrohytrodynamics: The Taylor-Melcher Leaky Dielectric Model
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
27
64
.10.1146/annurev.fluid.29.1.27
25.
Lin
,
S. P.
, and
Ruschak
,
K. J.
,
2004
, “
Breakup of Liquid Sheets and Jets
,”
ASME Appl. Mech. Rev.
,
57
(
4
), p.
286
.10.1115/1.1786591
26.
Feinberg
,
M. R.
, and
Schowalter
,
W. R.
,
1994
, “
Conditions for the Stability of Cylindrical Couette Flow of Certain Viscoelastic Liquids
,”
Fifth International Congress on Rheology
, Vol.
4
, pp.
201
216
.
27.
Joo
,
Y. L.
, and
Shaqfeh
,
E. S. G.
,
1992
, “
A Purely Elastic Instability in Dean and Taylor-Dean Flow
,”
Phys. Fluids
,
4
(
3
), pp.
524
543
.10.1063/1.858325
28.
Shureshkumar
,
R.
,
2001
, “
Local Linear Stability Characteristics of Viscoelastic Periodic Channel Flow
,”
J. Non-Newtonian Fluid Mech.
,
97
, pp.
125
148
.10.1016/s0377-0257(00)00229-9
29.
Smith
,
M. D.
,
Joo
,
Y. L.
,
Armstrong
,
R. C.
, and
Brown
,
R. A.
,
2003
, “
Linear Stability Analysis of Flow of an Oldroyd-B Fluid Through a Linear Array of Cylinders
,”
J. Non-Newtonian Fluid Mech.
,
109
(
1
), pp.
13
50
.10.1016/S0377-0257(02)00162-3
You do not currently have access to this content.